We first calculate the acceleration on the ball using:
2as = v² - u²; u = 0 because ball is initially at rest
a = (36)²/(2 x 0.35)
a = 1850 m/s²
F = ma
F = 0.058 x 1850
= 107.3 Newtons
Answer:
<h2>Derived quantities are based on fundamental quantities, and they can be given in terms of fundamental quantities.</h2>
<h3>Fundamental quantities are the base quantities of a unit system, and they are defined independent of the other quantities. </h3>
Explanation:
#Let's Study
#I Hope It's Helps
#Keep On Learning
#Carry On Learning

The x and y components of the velocity vector is 17.32 m/s and 10 m/s respectively.
<h3>
What is the x - component of the velocity?</h3>
The x-component of the ball's velocity is the velocity of the ball in the horizontal direction or x-axis.
The velocity of the ball in x-direction is calculated as follows;
Vx = V cosθ
where;
- Vx is the horizontal velocity of the ball
- V is the speed of the ball
- θ is the angle of inclination of the speed
Vx = (20 m/s) x (cos 30)
Vx = 17.32 m/s
The velocity of the ball in y-direction is calculated as follows;
Vy = V sinθ
where;
- Vy is the vertical velocity of the ball
- V is the speed of the ball
- θ is the angle of inclination of the speed
Vy = 20 m/s x sin(30)
Vy = 10 m/s
Learn more about x and y components of velocity here: brainly.com/question/18090230
#SPJ1
Answer:
1920watts
Explanation:
P=IV
P = 16 x 120 = 1920 watts
Answer:
mechanical energy
Explanation:
In an electric motor the electrical energy is converted into mechanical energy. Almost every mechanical movement that we see around us is accomplished by an electric motor. Electric machines are a means of converting energy. Motors take electrical energy and produce mechanical energy.