Forces on a Baseball. When a baseballis thrown or hit, the resulting motion of the ball is determined by Newton's laws of motion. ... Lift and drag are actually two components of a single aerodynamic force acting on the ball. Drag acts in a direction opposite to the motion, and lift acts perpendicular to the motion.
18 mililiter is equivilent to 0.0047551
The momentum change =mass*velocity change. But sincevelocity change is not known another strategy must be used to find the momentum change. The strategy involves first finding the impulse (F*t = 1.0 N*s). Since impulse = momentum change, the answer is 1.0 N*s.
The magnetic part using the Lorentz force is: F = q v x
B,
where v and B are vectors and v x B is the vector cross product.
Magnitude of the force: F = q v B sin(α)
So, sin(α) = F/( e v B), with e the proton charge.
This will give you a value for sin(α), and two potentials
for its opposite.
You will now look for:
sin(α) = 7.40 10^-13/( 1.60 10^-19 * 5 10^6 * 1.78)
= 0.520
So either sin(α) = 0.502 or sin(α) = -0.502
The 1st α = 30.1 degrees or α = 150 degrees.
The 2nd α = 210 degrees or α = 330 degrees.
So we can say that 30.1 degrees and 330 degrees would be minimum and biggest on [0,360]