Answer:
The charge on the third object is − 21.7nC
Explanation:
From Gauss's Law
Φ = Q/ε₀
where;
Φ is the total electric flux through the shell = − 533 N⋅m²/C
Q is the total charge Q in the shell = ?
ε₀ is the permittivity of free space = 8.85 x 10⁻¹²
From this equation; Φ = Q/ε₀
Q = Φ * ε₀ = − 533 * 8.85 x 10⁻¹²
Q = −4.7 X 10⁻⁹ C = -4.7nC
Q = q₁ + q₂ + q₃
− 4.7nC = − 14.0 nC + 31.0 nC + q₃
− 4.7nC − 17nC = q₃
− 21.7nC = q₃
Therefore, the charge on the third object is − 21.7nC
Answer:
The diagram assigned B
explanation:
Check the direction of the two vectors, their resultant must be in the same direction.
Yes, an increase in temperature is accompanied by an increase in pressure. Temperature is the measurement of heat present and more heat means more energy. Molecules in hotter temperatures move faster and more often, eventually moving into the gaseous phase. The molecules would fill the container, and the hotter it got the more they would bounce off the walls, pushing outward, increasing the pressure.
I suppose you could measure this with some kind of loosely inflated balloon and subject it to different temperatures and then somehow measure the size/pressure of it.
The upward force exerted on the board by the support is 530.8 N.
<h3>Upward force exerted on the board by the support</h3>
The sum of the upward forces is equal to sum of downward forces;
total downward forces = 52.8 N + 206 N + 272 N = 530.8 N
downward force = upward force = 530.8 N
Thus, the upward force exerted on the board by the support is 530.8 N.
Learn more about upward force here: brainly.com/question/6080367
#SPJ1