We have that the momentum p is given by the formula p=mv where m is the mass and v is the velocity. Since for A p=-14kgm/s and m=7, we have that the velocity is -14/7=-2m/s. Hence its speed is 2 m/s.
For b we have that p=15kgm/s and v=3m/s. Because m=p/v, we have m=3kg.
We also have that the momentum is conserved in this system. Hence, the net sum of the momentum of the 2 snowballs equals the momentum of the single giant ball. Hence, p(total)=p(combined)=-14+15=1kgm/s (momentum is a vector; the positive sign means that it tends to the positive direction).
<span>force applied causes movement of an object in the same direction as the applied force.</span>
Answer:
Calvin Cycles
Explanation:
This is a popular joke. Is this an answer choice for your question?
A 100kg crate slides along a floor with a starting velocity of 21 m/s. If the force due to friction is 8N, then, it will take 262.5 s for the box to come to rest.
We'll begin by calculating the declaration of the box. This can be obtained as follow:
Force (F) = –8 N (opposition)
Mass (m) = 100 Kg
<h3>Deceleration (a) =? </h3>
<h3>F = ma</h3>
–8 = 100 × a
Divide both side by 1000

<h3>a = –0.08 ms¯²</h3>
Therefore, the deceleration of the box is –0.08 ms¯²
Finally, we shall determine the time taken for the box to come to rest. This can be obtained as follow:
Deceleration (a) = –0.08 ms¯²
Initial velocity (u) = 21 ms¯¹
Final velocity (v) = 0 ms¯¹
<h3>Time (t) =.? </h3>
<h3>v = u + at</h3>
0 = 21 + (–0.08×t)
0 = 21 – 0.08t
Collect like terms
0 – 21 = –0.08t
–21 = –0.08t
Divide both side by –0.08

<h3>t = 262.5 s</h3>
Therefore, it will take 262.5 s for the box to come to rest.
Learn more: brainly.com/question/14446351