Answer:
1.53seconds
Explanation:
Using first equation of motion :
V=U + at
Where final velocity (V) =+8.3m/s
Initial velocity (U) =+4.4m/s
Acceleration (a) = 0.65m/s^2
time(s)=?
V=U + at
+8.3^2 = +4.4 + 0.65 * t
Making t the subject of the formula :
Therefore, t= ( +8.3 - 4.4)/0.65 = 1.53seconds
Answer:
I think it's B, not quite sure tho.
Answer:
46 m at 9.5 degrees east of south
Explanation:
Answer:3
Explanation:
First ball is thrown with horizontal velocity while other ball is dropped from cliff such that both have zero vertical velocity. So both balls have to cover a distance equal to the height of cliff with same initial velocity.
time taken is given by 
where h=height of cliff
g=acceleration due to gravity
horizontal velocity to first ball will make the ball to travel more horizontal distance as compared to second ball.
Option 3 is correct
Answer:
Magnitude of induced emf is 0.00635 V
Explanation:
Radius of circular loop r = 45 mm = 0.045 m
Area of circular loop 

Magnetic field is increases from 250 mT to 350 mT
Therefore change in magnetic field 
Emf induced is given by


Magnitude of induced emf is equal to 0.00635 V