Answer:
the current in a parallel circuit is found by idk
Explanation:
This question requires the use of the equation of motion:
v = u + at [v is final velocity (0), u is initial velocity (24), a is acceleration, t is time (13)]
to calculate the acceleration. This can then be multiplied by the mass of the plane to obtain the net force via:
F = ma (F is force, m is mass, a is acceleration)
First, we calculate the acceleration:
0 = 24 + 13(a)
a = -24/13 m/s^2
The force is then:
F = 90000 * (-24/13)
F = -1.66*10^5 Newtons
The negative sign indicates that the force and acceleration are in the opposite direction as the velocity (since we took velocity to be positive)
Factors that affect heat transfer are:
1) Difference in temperature,
2) Mass of the object
3) Specific heat of the object
Hope this helps!
Answer:
<h2>
14.66secs</h2>
Explanation:
Given the formula for calculating the depth in metres expressed as
depth in meters = ½ (1500 m/sec × Echo travel time in seconds)
Given depth of the challenger = 10, 994 meters, we will substitute this given value into the formula given to calculate the time take for the echo to travel.
10, 994 = depth in meters = ½ * 1500 m/sec × Echo travel time in seconds
10,994 = 750 * Echo travel time in seconds
Dividing both sides by 750;
Echo travel time in seconds = 10,994 /750
Echo travel time in seconds ≈ 14.66secs (to two decimal places)
Therefore, it would take an echo sounder’s ping 14.66secs to make the trip from a ship to the Challenger Deep and back
Since U=0,
h=1/2gt^2 (h= ut+1/2gt^2, U=0)
h=1/2*10*4*4
h=80m