I believe the answer is the first one.
Lindsay should fly the plane in the direction [W 12.5° S] to get Hamilton.
Using Sine rule to solve this question
Sine rule => SinA/a = SinB/b = SinC/c = constant
The magnitude of wind is 50 with an angle of 60 degrees.
The magnitude of plane is 200 and the angle at which it should fly is unknown and should be θ.
One side is 50 km/hr at an angle of 60 degrees.
sin 60°/200 = sin θ / 50
50 × sin 60° = 200 × sin θ
√3/2 = 4 × sin θ
√3/8 = sin θ
sin θ = 0.2165
θ = sin⁻¹(0.2165)
θ = 12.5°
So Lindsay have to fly the plane in the direction of [W 12.5° S].
Learn more about Sine Rule here:
brainly.com/question/27174058
#SPJ10
Answer:
we can say that with a smaller magnitude , the field will point is in same direction
Explanation:
we have given that
solenoid is filled with a diamagnetic material and with air, magnetic field pointing along its axis in the positive x direction
so in small magnitude, the field will point is in same direction
<u>The moon is not seen at all on the new moon because:</u>
The moon itself doesn't make a light, it reflects sunlight. At the point when the moon lies between the Earth and the Sun, it is just the posterior of the moon that is light by the Sun. In this circumstance, the side of the moon confronting the Earth can't mirror any light whatsoever and seems dull.
The distinction between another moon and a sunlight based over-shadowing is during a sun oriented obscuration, the moon is actually in the position to completely obstruct the sun during the day.