Answer:
1. C₄H₁₀ + ¹³/₂O₂ → 4CO₂ + 5H₂O
2. V = 596L
Explanation:
Butane (C₄H₁₀) reacts with oxygen (O₂) to produce carbon dioxide (CO₂) and water (H₂O) thus:
C₄H₁₀ + O₂ → CO₂ + H₂O
1. The balanced chemical equation is:
C₄H₁₀ + ¹³/₂O₂ → 4CO₂ + 5H₂O
2. 0,360kg of butane are:
360g×
=<em>6,19moles of butane</em>
These moles of butane are:
6,19moles of butane×
= <em>24,8 moles CO₂</em>
Using V=nRT/P
Where:
n are moles (24,8 moles CO₂); R is gas constant (0,082atmL/molK); T is temperature, 20°C (293,15K); and P is pressure (1atm).
Volume (V) is:
<em>V = 596L</em>
I hope it helps!
Answer:
1.31x10⁻³ moles of H₂
Explanation:
This is the equation:
Mg(s) + 2H₂O (g) → Mg(OH)₂ (aq) + H₂(g)
Ratio is 1:1, so 1 mol of Mg is needed to produce 1 mol of H₂
Mass / Molar mass = Mol
0.032 g / 24.3 g/m = 1.31x10⁻³ moles
1.31x10⁻³ moles of H₂(g)
<span>The correct answer is 'freezing point depression'. Colligative properties depend on the concentration of molecules of a solute. Examples of other colligative properties are boiling point elevation or vapour pressure lowering. The salt causes ice on the side walk to melt because it lowers the freezing point. </span>
Ever heard of this thing called... RESEARCH!? You might want to try it buddy. Sayounara.