<u>¹⁴₇N</u><u> </u>is the more stable isotope
<h3>
Briefly explained</h3>
We have ¹⁴₇N which has a neutron to proton ratio of one, and we look at ¹⁸₇N which has a neutron to proton ratio of 1.57 Again, you look at table 24 to and you see the atomic number of seven and there is really no stable isotope. It has any more than 10 neutrons.
When we have eight, protons will go down seven protons. There's really nothing stable that has more than maybe eight neutrons. So the fact that we have 11 neutrons with ¹⁸₇N suggests that this is very unstable and
¹⁴₇N is the stable isotope of the pair.
<h3>
Stable and Unstable Nuclei</h3>
An atom is electrically neutral. It contains an equal number of positively charged protons and negatively charged electrons and their charges balance. The nucleus however contains only positively charged protons which are closely packed together in a very small volume (remember neutrons have no charge).
From the laws of physics (Coulomb’s Law) one would expect that the protons being of the same charge and so close together would exert strong repulsive forces on each other. The combined gravitational force from the protons and neutrons in a nucleus is insignificant as an attractive force because their masses are so tiny.
This implies there must be an additional attractive force similar in size to the electrostatic repulsion which holds the nucleus together.
Learn more about stable and unstable nuclei
brainly.com/question/24748035
#SPJ4
HCl = H⁺ + Cl⁻
c(HCl)=9.8*10⁻⁵ mol/l
pH=-lg[H⁺]
[H⁺]=c(HCl)
pH=-lg{c(HCl)}
pH=-lg{9.8*10⁻⁵}=4.009
pH=4.009
Answer:
I think this the right answer maybe, the space between neurons is called a synapse. The nucleus of a neuron is located in the cell body. Axons carry messages toward the cell body. These are the true ones I think.
Explanation:
Answer:
13.36
first you have to convert the grams of nitrogen into moles when you got the moles of nitrogen. Then 2 moles of ammonia react with 1 mole nitrogen you have doubled the nitrogen mole and then convert the moles into the grams of ammonia.
use this formula for that:
moles = gram/molar mass
Answer:
25.11 g.
Explanation:
- It is clear from the balanced equation:
<em>Ag₂O + 2HCl → 2AgCl + H₂O.</em>
<em></em>
that 1.0 mole of Ag₂O reacts with 2.0 moles of HCl to produce 2.0 mole of AgCl and 1.0 moles of H₂O.
- 7.8 g of HCl reacts with excess Ag₂O. To calculate the no. of grams of Ag₂O that reacted, we should calculate the no. of moles of HCl:
<em>no. of moles of HCl = mass/atomic mass</em> = (7.9 g)/(36.46 g/mol) = <em>0.2167 mol.</em>
- From the balanced equation; every 1.0 mol of Ag₂O reacts with 2 moles of HCl.
∴ 0.2167 mol of HCl will react with (0.2617 mol / 2 = 0.1083 mol) of Ag₂O.
<em>∴ The mass of reacted Ag₂O = no. of moles x molar mas</em>s = (0.1083 mol)(231.735 g/mol) = <em>25.11 g.</em>