Answer:
The kilogram is the standard unit of mass.
Answer:
Explanation:
a) The mass of the reactants is 2.36 grams, and the mass of the products is 1.57 grams plus the mass of the carbonic acid. Thus, using the law of conservation of mass, we get the mass of the carbonic acid is 2.36 - 1.57 = 0.79 grams.
b) The gram-formula mass of sodium bicarbonate is 84.006 g/mol, meaning that 2.36/84.006 = 0.028 moles were consumed. Thus, this means that in theory, 0.014 moles of carbonic acid should have been produced, which would have a mass of (0.014)(62.024)=0.868 grams. Thus, the percentage yield is (0.79)/(0.868) * 100 = 91%
Answer:
Explanation:
Problem 1
<u>1. Data</u>
<u />
a) P₁ = 3.25atm
b) V₁ = 755mL
c) P₂ = ?
d) V₂ = 1325 mL
r) T = 65ºC
<u>2. Formula</u>
Since the temeperature is constant you can use Boyle's law for idial gases:

<u>3. Solution</u>
Solve, substitute and compute:


Problem 2
<u>1. Data</u>
<u />
a) V₁ = 125 mL
b) P₁ = 548mmHg
c) P₁ = 625mmHg
d) V₂ = ?
<u>2. Formula</u>
You assume that the temperature does not change, and then can use Boyl'es law again.

<u>3. Solution</u>
This time, solve for V₂:

Substitute and compute:

You must round to 3 significant figures:

Problem 3
<u>1. Data</u>
<u />
a) V₁ = 285mL
b) T₁ = 25ºC
c) V₂ = ?
d) T₂ = 35ºC
<u>2. Formula</u>
At constant pressure, Charle's law states that volume and temperature are inversely related:

The temperatures must be in absolute scale.
<u />
<u>3. Solution</u>
a) Convert the temperatures to kelvins:
- T₁ = 25 + 273.15K = 298.15K
- T₂ = 35 + 273.15K = 308.15K
b) Substitute in the formula, solve for V₂, and compute:

You must round to two significant figures: 290 ml
Problem 4
<u>1. Data</u>
<u />
a) P = 865mmHg
b) Convert to atm
<u>2. Formula</u>
You must use a conversion factor.
Divide both sides by 760 mmHg

<u />
<u>3. Solution</u>
Multiply 865 mmHg by the conversion factor:

Answer:
Research is constantly deepening our understanding of chemistry, and leading to new discoveries. Chemistry will help us solve many future problems, including sustainable energy and food production, managing our environment, providing safe drinking water and promoting human and environmental health.Chemistry is a big part of your everyday life. You find chemistry in daily life in foods you eat, air you breathe, soap, your emotions and literally every object you can see or touch. ... Food is made from chemicals. Many of the changes you observe in the world around you are caused by chemical reactions.By observing chemical reactions, we are able to understand and explain how the natural world works. Chemical reactions turn food into fuel for your body, make fireworks explode, cause food to change when it is cooked, make soap remove grime, and much more.