Answers B and D are true.
Answer:
Explanation:
We shall consider a Gaussian surface inside the insulation in the form of curved wall of a cylinder having radius equal to 3mm and unit length , length being parallel to the axis of wire .
Charge inside the cylinder = 250 x 10⁻⁹ C .
Let E be electric field at the curved surface , perpendicular to surface .
Total electric flux coming out of curved surface
= 2π r x 1 x E
= 2 x 3.14 x 3 x 10⁻³ E
According to Gauss's theorem , total flux coming out
= charge inside / ε ( 250 x 10⁻⁹C charge will lie inside cylinder )
= 250 x 10⁻⁹ / 2.5 x 8.85 x 10⁻¹² ( ε = 2.5 ε₀ = 2.5 x 8.85 x 10⁻¹² )
= 11.3 x 10³ weber .
so ,
2 x 3.14 x 3 x 10⁻³ E = 11.3 x 10³
E = 11.3 x 10³ / 2 x 3.14 x 3 x 10⁻³
= .599 x 10⁶ N /C .
Answer:
1. Flexibility.
2. Muscular Fitness
3. Cardiovascular Fitness
4. Cardiovascular Fitness
5. Flexibility
6. Muscular Fitness
7. Cardiovascular Fitness
Answer:Gases do not conduct heat as well as liquids and are therefore good insulators. Gases consist of widely spread out particles, and it takes contact to conduct heat. ... They are insulators if they are not ionized and there are no free charged particles there that can carry electric current.
Explanation: