Answer: velocity of the car is 113.33m/s
Explanation:
From Doppler effect,
in the case which the source is moving towards the observer at rest
f2 = v/(v-vs) *f1
where f2 is the final observed frequency
f1 is the initial observed frequency
v = 340m/s (speed of sound in air)
vs = velocity of the source of sound.
rearranging the above equation
f2*(v - vs) = f1* v
vs = (f1* v/f2) - v
but f1 = 80Hz
f2 = 60Hz
v = 340m/s
substituting,
vs = (80 x 340)/60 - 340
vs = 453.33 - 340
vs = 113.33m/s
velocity of the car is 113.33m/s
Answer:
any object that has density more than 1.4
Explanation:
The object that has density more than 1.4 is denser than the honey
Answer:
It would be 2600
Explanation:
M/S stands for meters per second. If it moved 1 meter for 2600 seconds, than it would be 2600. You just multiply 2600 by 1! I hope this helps :D
Answer:
In a coiled spring, the particles of the medium vibrate to and fro about their mean positions at an angle of
A. 0° to the direction of propagation of wave
Explanation:
The waveform of a coiled spring is a longitudinal wave, which is made up of vibrations of the spring which are in the same direction as the direction of the wave's advancement
As the coiled spring experiences a compression force and is then released, it experiences a sequential movement of the wave of the compression that extends the length of the coiled spring which is then followed by a stretched section of the coiled spring in a repeatedly such that the direction of vibration of particles of the coiled is parallel to direction of motion of the wave
From which we have that the angle between the direction of vibration of the particles of the coiled spring and the direction of propagation of the wave is 0°.