Answer: Magnesium Mg
Explanation:
Oxidization is the process by which a substance either gains oxygen or losses electrons.
The chemical reaction of the above is denoted by,
Mg(s) + 2HCl(aq) -----> MgCl2(aq) + H2(g)
Mg went from a 0 to a +2 state which would mean that it lost electrons.
It was therefore oxidized.
Please do react or comment if you need clarification or if the answer helped you. This can help other users as well. Thank you.
Answer:
y1 = 0.3162
y2 = 0.6838
Explanation:
ok let us begin,
first we would be defining the parameters;
at 25°C;
1-propanol P1° = 20.90 Torr
2-propanol P2° = 45.2 Torr
From Raoults law:
P(1-propanol) = P⁰ × X(1-propanol)
P(1-propanol) = 20.9 torr × 0.45 = 9.405
P(1-propanol) = 9.405 torr
Also P(2-propanol) = P⁰ × X(2-propanol)
P(2-propanol) = 45.2 torr × 0.45
P(2-propanol) = 20.34 torr
but the total pressure = sum of individual pressures
total pressure = 9.405 + 20.34
total pressure = 29.745 torr
given that y1 and y2 represent the mole fraction of each in the vapor phase
y1 = P1 / total pressure
y1 = 9.405/29.745
y1 = 0.3162
Since y1 + y2 = 1
y2 = 1 - y1
∴ y2 = 1 - 0.3162
y2 = 0.6838
cheers, i hope this helps.
Answer:
1 .
2.
Explanation:
The more stable the ionic compound, the more is it lattice energy.
- The more the charge on the cation and the anion, the greater is the lattice energy.
- The less the size of the cation and the anion, the greater is the lattice energy.
Scandium oxide (
) is an oxide in which
behaves as cation and
behaves as anion.
The compounds which has higher lattice energy than scandium oxide are:
1 .
This is because the charge are same on the cation and the anion as in the case of the Scandium oxide but the size of the cation
is smaller than
. Thus, this corresponds to higher lattice energy.
2.
This is because the charge on the cation
is greater than that of
and also the size of the cation
is smaller than
. Thus, this corresponds to higher lattice energy.
Answer:
<u />
<u />
<u />
Explanation:
<u>1. Chemical balanced equation (given)</u>

<u>2. Mole ratio</u>

This is, 1 mol of NaOH will reacts with 1 mol of KHP.
<u />
<u>3. Find the number of moles in 72.14 mL of the base</u>



<u>4. Find the number of grams of KHP that reacted</u>
The number of moles of KHP that reacted is equal to the number of moles of NaOH, 0.007055 mol
Convert moles to grams:
- mass = number moles × molar mass = 0.007055mol × 204.23g/mol
You have to round to 3 significant figures: 1.44 g (because the molarity is given with 3 significant figures).
<u>5. Find the percentage of KHP in the sample</u>
The percentage is how much of the substance is in 100 parts of the sample.
The formula is:
- % = (mass of substance / mass of sample) × 100
- % = (1.4408g/ 1.864g) × 100 = 77.3%
Answer:
Three types of metamorphism exist: contact, dynamic, and regional. Metamorphism produced with increasing pressure and temperature conditions is known as prograde metamorphism.