Answer:
Average atomic mass of carbon = 12.01 amu.
Explanation:
Given data:
Abundance of C¹² = 98.89%
Abundance of C¹³ = 1.11%
Atomic mass of C¹² = 12.000 amu
Atomic mass of C¹³ = 13.003 amu
Average atomic mass = ?
Solution:
Average atomic mass of carbon = (abundance of 1st isotope × its atomic mass) +(abundance of 2nd isotope × its atomic mass) / 100
Average atomic mass of carbon = (12.000×98.89)+(13.003×1.11) /100
Average atomic mass of carbon= 1186.68 + 14.43333 / 100
Average atomic mass of carbon = 1201.11333 / 100
Average atomic mass of carbon = 12.01 amu.
Scirnce uses a method of testing to declare rules or facts. myth and fairy tales have no way of being tested. cats are a physical creature we can see, test, and observe. a mythical idea canny be tested. for example: mermaids cannot be tested as we have none to observe.
Another product: CO₂
<h3>Further explanation</h3>
Given
Reaction
2C₄H₁₀ + 13O₂⇒ 8__+ 10H₂O
Required
product compound
Solution
In the combustion of hydrocarbons there can be 2 kinds of products
If there is excess Oxygen, you will get Carbon dioxide(CO₂) and water in the product
If Oxygen is low, you'll get Carbon monoxide(CO) and water
Or in other ways, we can use the principle of the law of conservation of mass which is also related to the number of atoms in the reactants and in the products
if we look at the reaction above, there are C atoms on the left (reactants), so that in the product there will also be C atoms with the same number of C atoms on the left
2C₄H₁₀ + 13O₂⇒ 8CO₂+ 10H₂O
Answer:
B. Particles of matter have spaces between them.
Explanation:
The particle nature model of matter is an model used to explain the properties and nature of matter. The statements of the particle nature model of matter are as follows :
1. Matter is made of small particles of atoms or molecules.
2. The particles of matter have space between them. The spaces between the particles are least in solids as they are closely packed together but are greatest in gases whose particles are far apart from each other.
3. The particles of matter are in constant motion at all times. Solids particles are not free to move due to strong molecular forces between the particles, but are constantly vibrating in their mean positions. Liquid particles free to move due to lesser molecular forces while gas molecules which have negligible intermolecular forces have the greatest ability to move.
4. The particles of matter are attracted to each other by intermolecular forces. These forces are greatest in solids and least in gases.
The correct option is B.