1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vovangra [49]
3 years ago
5

A road repair crew spread 9/10 of a ton of gravel evenly over 3 feet of road. How many tons of gravel did they spread on each fo

ot of road?
Mathematics
2 answers:
Ede4ka [16]3 years ago
7 0

Answer:

3/10 ton per foot

Step-by-step explanation:

Take the amount of gravel and divide by the distance of road

9/10 ton ÷ 3 ft

Copy dot flip

9/10 * 1/3

9/30

3/10 ton per foot

Maru [420]3 years ago
5 0

If 9/10 tons of gravel got spread over 3 feet, then how much gravel is on each foot? Well, it's a ratio.

9/10 tons : 3 ft

So, we divide each side of the ratio by 3.

3/10 tons : 1 ft.

So, that 3/10 tons of gravel on each foot of road.

You might be interested in
Please answer this question, i request
Jet001 [13]

{\large{\textsf{\textbf{\underline{\underline{Given :}}}}}}

\star  \:  \tt \cot  \theta = \dfrac{7}{8}

{\large{\textsf{\textbf{\underline{\underline{To \: Evaluate :}}}}}}

\star \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }

{\large{\textsf{\textbf{\underline{\underline{Solution :}}}}}}

Consider a \triangle ABC right angled at C and \sf \angle \: B = \theta

Then,

‣ Base [B] = BC

‣ Perpendicular [P] = AC

‣ Hypotenuse [H] = AB

\therefore \tt \cot  \theta   =  \dfrac{Base}{ Perpendicular}  =  \dfrac{BC}{AC} = \dfrac{7}{8}

Let,

Base = 7k and Perpendicular = 8k, where k is any positive integer

In \triangle ABC, H² = B² + P² by Pythagoras theorem

\longrightarrow \tt {AB}^{2}  =   {BC}^{2}  +   {AC}^{2}

\longrightarrow \tt {AB}^{2}  =   {(7k)}^{2}  +   {(8k)}^{2}

\longrightarrow \tt {AB}^{2}  =   49{k}^{2}  +   64{k}^{2}

\longrightarrow \tt {AB}^{2}  =   113{k}^{2}

\longrightarrow \tt AB  =   \sqrt{113  {k}^{2} }

\longrightarrow \tt AB = \red{  \sqrt{113}  \:  k}

Calculating Sin \sf \theta

\longrightarrow  \tt \sin \theta = \dfrac{Perpendicular}{Hypotenuse}

\longrightarrow  \tt \sin \theta = \dfrac{AC}{AB}

\longrightarrow  \tt \sin \theta = \dfrac{8 \cancel{k}}{ \sqrt{113} \: \cancel{ k } }

\longrightarrow  \tt \sin \theta =  \purple{  \dfrac{8}{ \sqrt{113} } }

Calculating Cos \sf \theta

\longrightarrow  \tt \cos \theta = \dfrac{Base}{Hypotenuse}

\longrightarrow  \tt \cos \theta =  \dfrac{BC}{ AB}

\longrightarrow  \tt \cos \theta =  \dfrac{7 \cancel{k}}{ \sqrt{113} \:  \cancel{k } }

\longrightarrow  \tt \cos \theta =  \purple{ \dfrac{7}{ \sqrt{113} } }

<u>Solving the given expression</u><u> </u><u>:</u><u>-</u><u> </u>

\longrightarrow \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }

Putting,

• Sin \sf \theta = \dfrac{8}{ \sqrt{113} }

• Cos \sf \theta = \dfrac{7}{ \sqrt{113} }

\longrightarrow \:  \tt \dfrac{ \bigg(1 +  \dfrac{8}{ \sqrt{133}} \bigg) \bigg(1 - \dfrac{8}{ \sqrt{133}} \bigg) }{\bigg(1 +  \dfrac{7}{ \sqrt{133}} \bigg) \bigg(1 - \dfrac{7}{ \sqrt{133}} \bigg)}

<u>Using</u><u> </u><u>(</u><u>a</u><u> </u><u>+</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>(</u><u>a</u><u> </u><u>-</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>=</u><u> </u><u>a²</u><u> </u><u>-</u><u> </u><u>b²</u>

\longrightarrow \:  \tt  \dfrac{ { \bigg(1 \bigg)}^{2}  -  { \bigg(  \dfrac{8}{ \sqrt{133} } \bigg)}^{2}   }{ { \bigg(1 \bigg)}^{2}  -  { \bigg(  \dfrac{7}{ \sqrt{133} } \bigg)}^{2}  }

\longrightarrow \:  \tt   \dfrac{1 -  \dfrac{64}{113} }{ 1 - \dfrac{49}{113} }

\longrightarrow \:  \tt   \dfrac{ \dfrac{113 - 64}{113} }{  \dfrac{113 - 49}{113} }

\longrightarrow \:  \tt { \dfrac  { \dfrac{49}{113} }{  \dfrac{64}{113} } }

\longrightarrow \:  \tt   { \dfrac{49}{113} }÷{  \dfrac{64}{113} }

\longrightarrow \:  \tt    \dfrac{49}{ \cancel{113}} \times     \dfrac{ \cancel{113}}{64}

\longrightarrow \:  \tt   \dfrac{49}{64}

\qquad  \:  \therefore  \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }  =   \pink{\dfrac{49}{64} }

\begin{gathered} {\underline{\rule{300pt}{4pt}}} \end{gathered}

{\large{\textsf{\textbf{\underline{\underline{We \: know :}}}}}}

✧ Basic Formulas of Trigonometry is given by :-

\begin{gathered}\begin{gathered}\boxed { \begin{array}{c c} \\ \bigstar \:  \sf{ In \:a \:Right \:Angled \: Triangle :}  \\ \\ \sf {\star Sin \theta = \dfrac{Perpendicular}{Hypotenuse}} \\\\ \sf{ \star \cos \theta = \dfrac{ Base }{Hypotenuse}}\\\\ \sf{\star \tan \theta = \dfrac{Perpendicular}{Base}}\\\\ \sf{\star \cosec \theta = \dfrac{Hypotenuse}{Perpendicular}} \\\\ \sf{\star \sec \theta = \dfrac{Hypotenuse}{Base}}\\\\ \sf{\star \cot \theta = \dfrac{Base}{Perpendicular}} \end{array}}\\\end{gathered} \end{gathered}

{\large{\textsf{\textbf{\underline{\underline{Note :}}}}}}

✧ Figure in attachment

\begin{gathered} {\underline{\rule{200pt}{1pt}}} \end{gathered}

3 0
2 years ago
Write 5 Expressions that are equivalent to 20x + 100
lapo4ka [179]
1st. x times 20+100
2nd. 100+20x
3rd. 100+x times20
4th. 20x+100
5th. x20+100

8 0
3 years ago
Read 2 more answers
I made 10 and three fifths gallons of soup of which 6 and one quarter gallons was chicken noodle. How much was not chicken noodl
nata0808 [166]

Answer: 4 7/20 gallons

Step-by-step explanation:

Gallons of soup made = 10 3/5

Gallons that was chicken noodle = 6 1/4

The gallons that wasn't chicken noodle will be:

= 10 3/5 - 6 1/4

= 10 12/20 - 6 5/20

= 4 7/20

Therefore, 4 7/20 gallons wasn't chicken noodle.

8 0
3 years ago
Hey ya<br><br><br><br>define matter <br><br><br><br><br>have a great day ​
shutvik [7]

Answer:

 matter is any substance that has mass and takes up space by having volume

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
Which statements are true about a rectangular pyramid with a height of 9 centimeters and a base with the dimensions of 4 centime
Semmy [17]

Answer:

B. The area of the base of the pyramid, B, is 24 centimeters squared.

C. A rectangular prism with the dimensions of 9 centimeters by 4 centimeters by 6 centimeters will have 3 times volume of this pyramid.

Step-by-step explanation:

Given a rectangular pyramid with:

Height=9 cm

Base Dimensions = 4 centimeters by 6 centimeters

Base Area B=4 X 6 =24 Square cm.

Therefore, Option B (The area of the base of the pyramid, B, is 24 centimeters squared) is correct.

Volume of a pyramid = \frac{1}{3} $ X Base Area X Height

=\frac{1}{3}  X 24X9=72 cm^3

Volume of a Prism with the dimensions of 9 centimeters by 4 centimeters by 6 centimeters

=Base Area X Height

=24 X 9

=216 cm^3

Now, 216/72=3

Therefore, A rectangular prism with the same dimensions will have 3 times volume of this pyramid

Therefore, <u>Option C is correct.</u>

6 0
3 years ago
Read 2 more answers
Other questions:
  • What is used to repair big brass band instruments
    9·1 answer
  • Given points A(4, –2), B(1, 2), C(–2, 6). Find the distance between each two of them. Prove that points A, B, and C are collinea
    9·1 answer
  • Triangle 1 is transformed as shown in the diagram, resulting in triangle 3. Describe the transformations.
    13·2 answers
  • Step 2; he wrote distributive instead of associative hope this helps
    13·1 answer
  • Find all sets of three consecutive integers whose sums are greater than 102 and less than 109
    8·1 answer
  • At a basketball game, 95% of people attending were supporting the home team, while 5% were supporting the visiting team. If 532
    10·1 answer
  • A car rental agency Advertise renting a car for $24.95 per day and $.33 per mile is Kevin rent the car for today how many whole
    13·1 answer
  • Sally initially has 4 hours of pop music and 3 hours of classical music in her collection. Every month onwards, the hours of pop
    5·1 answer
  • A government agency reports that 22% of baby boys 6-8 months old in the United States weigh less than 25 pounds. A sample of 147
    12·1 answer
  • What is the first term of the arithmetic sequence?.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!