Answer:
<em>The temperature will be greater than 25°C</em>
Explanation:
In an adiabatic process, heat is not transferred to or from the boundary of the system. The gain or loss of internal heat energy is solely from the work done on the system, or work done by the system. The work done on the system by the environment adds heat to the system, and work done by the system on its environment takes away heat from the system.
mathematically
Change in the internal energy of a system ΔU = ΔQ + ΔW
in an adiabatic process, ΔQ = 0
therefore
ΔU = ΔW
where ΔQ is the change in heat into the system
ΔW is the work done by or done on the system
when work is done on the system, it is conventionally negative, and vice versa.
also W = pΔv
where p is the pressure, and
Δv = change in volume of the system.
In this case,<em> work is done on the gas by compressing it from an initial volume to the new volume of the cylinder. The result is that the temperature of the gas will rise above the initial temperature of 25°C </em>
Answer:
Concentration = 10.33 kg/m³
Explanation:
We are given;
Mass of solids; 10,000 kg
Volume; V = 440,000 L = 440 m³
Rate at which water is pumped out = 40,000 liter/h
Thus, at the end of 5 hours we amount of water that has been replaced with fresh water is = 40,000 liter/h x 5 hours = 200,000 L = 200 m³
Now, since the tank is perfectly mixed, therefore we can calculate a ratio of fresh water to sewage water as;
200m³/440m³ = 5/11
Thus, the amount left will be calculated by multiplying that ratio by the amount of solids;
Thus,
Amount left; = 10000 x (5/11) = 4545 kg
The concentration would be calculated by:
Concentration = amount left/initial volume
Thus,
Concentration = 4545/440 = 10.3 kg/m³
Answer:
Example for strengthening mechanism in single-phase material: Strain hardening- D.
Answer:
No
Explanation:
People work in engineering all over the globe.
Answer:
a) 
b) The flow would be going from section (b) to section (a)
Explanation:
1) Notation


For above conversions we use the conversion factor


head loss from section
2) Formulas and definitions
For this case we can apply the Bernoulli equation between the sections given (a) and (b). Is important to remember that this equation allows en energy balance since represent the sum of all the energies in a fluid, and this sum need to be constant at any point selected.
The formula is given by:

Since we have a constant section on the piple we have the same area and flow, then the velocities at point (a) and (b) would be the same, and we have just this expression:

3)Part a
And on this case we have all the values in order to replace and solve for 


4)Part b
Analyzing the value obtained for
is a negative value, so on this case this means that the flow would be going from section (b) to section (a).