1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
shutvik [7]
3 years ago
12

A debugging process where you, the programmer, pretend you are a computer and step through each statement while recording the va

lue of each variable at each step is known as
Engineering
1 answer:
Ipatiy [6.2K]3 years ago
5 0

Answer:

hand tracing

Explanation:

as a programmer when we pretend  computer in the  debugging process by the step of each statement in recording    

then there value of variable is hand tracing because as The hand tracking feature is the use of hands as an input method      

so while recording value of each variable each step is hand tracing

You might be interested in
A meter stick can be read to the nearest millimeter and a travelling microscope can be read to the nearest 0.1 mm. Suppose you w
german

Answer: No

Explanation:

Length= 2cm= 20mm

Now meter stick can read to nearest millimeter.

It is given that length is to be measured with a precision of 1% of 20mm= 1/100 * 20= 0.2mm

Since the least count is 1mm of meter stick and precision required is less than that. So, meter stick cannot be used for this, travelling microscope can be used for this as it can read to 0.1mm.

3 0
3 years ago
Water flows through a horizontal plastic pipe with a diameter of 0.15 m at a velocity of 15 cm/s. Determine the pressure drop pe
Sonja [21]

Answer:0.1898 Pa/m

Explanation:

Given data

Diameter of Pipe\left ( D\right )=0.15m

Velocity of water in pipe\left ( V\right )=15cm/s

We know viscosity of water is\left (\mu\right )=8.90\times10^{-4}pa-s

Pressure drop is given by hagen poiseuille equation

\Delta P=\frac{128\mu \L Q}{\pi D^4}

We have asked pressure Drop per unit length i.e.

\frac{\Delta P}{L} =\frac{128\mu \ Q}{\pi D^4}

Substituting Values

\frac{\Delta P}{L}=\frac{128\times8.90\times10^{-4}\times\pi \times\left ( 0.15^{3}\right )}{\pi\times 4 \times\left ( 0.15^{2}\right )}

\frac{\Delta P}{L}=0.1898 Pa/m

4 0
3 years ago
"Mass burn technology uses unprocessed municipal solid waste to generate heat which is used to produce electricity."
Flura [38]

Answer:

True

Explanation:

Mass burn technology is a type of waste-to-energy technology commonly used in the mass-burn system, where unprocessed municipal solid waste is burned in a large incinerator with a boiler, to  generate heat used in the production of electricity.

6 0
3 years ago
Read 2 more answers
Water at a pressure of 3 bars enters a short horizontal convergent channel at 3.5 m/s. The upstream and downstream diameters of
earnstyle [38]

Answer:

The pressure reduces to 2.588 bars.

Explanation:

According to Bernoulli's theorem for ideal flow we have

\frac{P}{\gamma _{w}}+\frac{V^{2}}{2g}+z=constant

Since the losses are neglected thus applying this theorm between upper and lower porion we have

\frac{P_{u}}{\gamma _{w}}+\frac{V-{u}^{2}}{2g}+z_{u}=\frac{P_{L}}{\gamma _{w}}+\frac{V{L}^{2}}{2g}+z_{L}

Now by continuity equation we have

A_{u}v_{u}=A_{L}v_{L}\\\\\therefore v_{L}=\frac{A_{u}}{A_{L}}\times v_{u}\\\\v_{L}=\frac{d^{2}_{u}}{d^{2}_{L}}\times v_{u}\\\\\therefore v_{L}=\frac{2500}{900}\times 3.5\\\\\therefore v_{L}=9.72m/s

Applying the values in the Bernoulli's equation we get

\frac{P_{L}}{\gamma _{w}}=\frac{300000}{\gamma _{w}}+\frac{3.5^{2}}{2g}-\frac{9.72^{2}}{2g}(\because z_{L}=z_{u})\\\\\frac{P_{L}}{\gamma _{w}}=26.38m\\\\\therefore P_{L}=258885.8Pa\\\\\therefore P_{L}=2.588bars

6 0
3 years ago
A 100 ft long steel wire has a cross-sectional area of 0.0144 in.2. When a force of 270 lb is applied to the wire, its length in
blondinia [14]

Answer:

(a) The stress on the steel wire is 19,000 Psi

(b) The strain on the steel wire is 0.00063

(c) The modulus of elasticity of the steel is 30,000,000 Psi

Explanation:

Given;

length of steel wire, L = 100 ft

cross-sectional area, A = 0.0144 in²

applied force, F = 270 lb

extension of the wire, e = 0.75 in

<u>Part (A)</u> The stress on the steel wire;

δ = F/A

   = 270 / 0.0144

δ  = 18750 lb/in² = 19,000 Psi

<u>Part (B)</u> The strain on the steel wire;

σ = e/ L

L = 100 ft = 1200 in

σ = 0.75 / 1200

σ = 0.00063

<u>Part (C)</u> The modulus of elasticity of the steel

E = δ/σ

   = 19,000 / 0.00063

E = 30,000,000 Psi

4 0
3 years ago
Other questions:
  • 1. A pipeline constructed of carbon steel failed after 3 years of operation. On examination it was found that the wall thickness
    13·1 answer
  • Check the answer that best describes the relationship between f(x) and x. (For example if f(x) is Θ(x) check that as your answer
    12·1 answer
  • Can you carry 1 m3 of liquid water? Why or why not? (provide the weight to support your answer)
    7·1 answer
  • How many volts of electricity would it take to power up an entire city? Take Tokyo for example. Please explain!
    12·1 answer
  • Which of the following statements about pitot-static systems is FALSE? a). A pitot probe measures the Total Pressure of the free
    10·1 answer
  • What engine does chrysler 300c have?​
    15·1 answer
  • An op-amp differential amplifier is built using four identical resistors, each having a tolerance of ±5%. Calculate the worst p
    14·1 answer
  • An ocean thermal energy conversion system is being proposed for electric power generation. Such a system is based on the standar
    5·1 answer
  • Me ayudas plis noce ​
    14·1 answer
  • What is the first step of the engineering design process?
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!