Answer:
The given grammar is :
S = T V ;
V = C X
X = , V | ε
T = float | double
C = z | w
1.
Nullable variables are the variables which generate ε ( epsilon ) after one or more steps.
From the given grammar,
Nullable variable is X as it generates ε ( epsilon ) in the production rule : X -> ε.
No other variables generate variable X or ε.
So, only variable X is nullable.
2.
First of nullable variable X is First (X ) = , and ε (epsilon).
L.H.S.
The first of other varibles are :
First (S) = {float, double }
First (T) = {float, double }
First (V) = {z, w}
First (C) = {z, w}
R.H.S.
First (T V ; ) = {float, double }
First ( C X ) = {z, w}
First (, V) = ,
First ( ε ) = ε
First (float) = float
First (double) = double
First (z) = z
First (w) = w
3.
Follow of nullable variable X is Follow (V).
Follow (S) = $
Follow (T) = {z, w}
Follow (V) = ;
Follow (X) = Follow (V) = ;
Follow (C) = , and ;
Explanation:
Answer:
the volume of water that will be required to bring these soils to the optimum moisture content is 1859 kL
Explanation:
Given that;
volume of cut = 25,100 m³
Volume of dry soil fill = 23,300 m³
Weight of the soil will be;
⇒ 93% × 18.3 kN/m³ × 23,300 m³
= 0.93 × 426390 kN 3
= 396,542.7 kN
Optimum moisture content = 12.9 %
Required amount of moisture = (12.9 - 8.3)% = 4.6 %
So,
Weight of water required = 4.6% × 396,542.7 = 18241 kN
Volume of water required = 18241 / 9.81 = 1859 m³
Volume of water required = 1859 kL
Therefore, the volume of water that will be required to bring these soils to the optimum moisture content is 1859 kL
Answer:
C: Viscosity, the resistance to flow that fluids exhibit
Explanation:
Did it on Edge :)
Answer:
B
Explanation:
becuase this is the best optimal answer when it comes to this particular situation of choice