Answer:
The PFR is more efficient in the removal of the reactive compound as it has the higher conversion ratio.
Xₚբᵣ = 0.632
X꜀ₘբᵣ = 0.5
Xₚբᵣ > X꜀ₘբᵣ
Explanation:
From the reaction rate coefficient, it is evident the reaction is a first order reaction
Performance equation for a CMFR for a first order reaction is
kτ = (X)/(1 - X)
k = reaction rate constant = 0.05 /day
τ = Time constant or holding time = V/F₀
V = volume of reactor = 280 m³
F₀ = Flowrate into the reactor = 14 m³/day
X = conversion
k(V/F₀) = (X)/(1 - X)
0.05 × (280/14) = X/(1 - X)
1 = X/(1 - X)
X = 1 - X
2X = 1
X = 1/2 = 0.5
For the PFR
Performance equation for a first order reaction is given by
kτ = In [1/(1 - X)]
The parameters are the same as above,
0.05 × (280/14) = In (1/(1-X)
1 = In (1/(1-X))
e = 1/(1 - X)
2.718 = 1/(1 - X)
1 - X = 1/2.718
1 - X = 0.3679
X = 1 - 0.3679
X = 0.632
The PFR is evidently more efficient in the removal of the reactive compound as it has the higher conversion ratio.
Answer:
uhhhhh, are you kidding? a GTX 3060 is far better than a 1060 ding dong
Explanation:
Answer:
Mechanical property
Explanation:
MECHANICAL PROPERTIES can be defined as the ability of a metal or material to remain undamaged after different type of forces has been applied or used on them because forces or loads are often applied to metal, material or physical properties which is why MECHANICAL PROPERTIES enables us to know the strength , toughness as well as the hardness of metal and the way this metal perform or react when different forces are applied on them.
Lastly any metal, material or physical properties that has the strength , hardness and resistance to withstand or remain unaffected despite the loads or forces use on them is an example of MECHANICAL PROPERTIES.
Therefore Resistance to impact is an example of a(n) MECHANICAL PROPERTIES.