Answer:
A. ![r=k[NO]^2[H_2]](https://tex.z-dn.net/?f=r%3Dk%5BNO%5D%5E2%5BH_2%5D)
B. 
C. Second-order with respect to NO and first-order with respect to H₂
Explanation:
Hello,
In this case, for the reaction:

The rate law is determined by writing the following hypothetical rate laws:
![3.822x10^{-3}=k[0.3]^m[0.35]^n\\\\1.529x10^{-2}=k[0.6]^m[0.35]^n\\\\3.058x10^{-2}=k[0.6]^m[0.7]^n](https://tex.z-dn.net/?f=3.822x10%5E%7B-3%7D%3Dk%5B0.3%5D%5Em%5B0.35%5D%5En%5C%5C%5C%5C1.529x10%5E%7B-2%7D%3Dk%5B0.6%5D%5Em%5B0.35%5D%5En%5C%5C%5C%5C3.058x10%5E%7B-2%7D%3Dk%5B0.6%5D%5Em%5B0.7%5D%5En)
Whereas we can compute m as follows:
![\frac{3.822x10^{-3}}{1.529x10^{-2}} =\frac{[0.3]^m[0.35]^n}{[0.6]^m[0.35]^n} \\\\0.25=(0.5)^m\\\\m=\frac{log(0.25)}{log(0.5)} \\\\m=2](https://tex.z-dn.net/?f=%5Cfrac%7B3.822x10%5E%7B-3%7D%7D%7B1.529x10%5E%7B-2%7D%7D%20%3D%5Cfrac%7B%5B0.3%5D%5Em%5B0.35%5D%5En%7D%7B%5B0.6%5D%5Em%5B0.35%5D%5En%7D%20%5C%5C%5C%5C0.25%3D%280.5%29%5Em%5C%5C%5C%5Cm%3D%5Cfrac%7Blog%280.25%29%7D%7Blog%280.5%29%7D%20%5C%5C%5C%5Cm%3D2)
Therefore, the reaction is second-order with respect to NO. Thus, for hydrogen, we find n:
![\frac{1.529x10^{-2}}{3.058x10^{-2}} =\frac{[0.6]^2[0.35]^n}{[0.6]^2[0.7]^n} \\\\0.5=(0.5)^n\\\\n=\frac{log(0.5)}{log(0.5)}\\ \\n=1](https://tex.z-dn.net/?f=%5Cfrac%7B1.529x10%5E%7B-2%7D%7D%7B3.058x10%5E%7B-2%7D%7D%20%3D%5Cfrac%7B%5B0.6%5D%5E2%5B0.35%5D%5En%7D%7B%5B0.6%5D%5E2%5B0.7%5D%5En%7D%20%5C%5C%5C%5C0.5%3D%280.5%29%5En%5C%5C%5C%5Cn%3D%5Cfrac%7Blog%280.5%29%7D%7Blog%280.5%29%7D%5C%5C%20%5C%5Cn%3D1)
A) Therefore, the reaction is first-order with respect to H₂. In such a way, we conclude that that the rate law is:
![r=k[NO]^2[H_2]](https://tex.z-dn.net/?f=r%3Dk%5BNO%5D%5E2%5BH_2%5D)
B) Rate constant is computed from one kinetic data:

C. As mentioned before, reaction is second-order with respect to NO and first-order with respect to H₂.
Best regards.