We are given that the concentration of NaOH is 0.0003 M and are asked to calculate the pH
We know that NaOH dissociates by the following reaction:
NaOH → Na⁺ + OH⁻
Which means that one mole of NaOH produces one mole of OH⁻ ion, which is what we care about since the pH is affected only by the concentration of H⁺ and OH⁻ ions
Now that we know that one mole of NaOH produces one mole of OH⁻, 0.0003M NaOH will produce 0.0003M OH⁻
Concentration of OH⁻ (also written as [OH⁻]) = 3 * 10⁻⁴
<u>pOH of the solution:</u>
pOH = -log[OH⁻] = -log(3 * 10⁻⁴)
pOH = -0.477 + 4
pOH = 3.523
<u>pH of the solution:</u>
We know that the sum of pH and pOH of a solution is 14
pH + pOH = 14
pH + 3.523 = 14 [subtracting 3.523 from both sides]
pH = 10.477
The quality or state of being volcanic.
Answer:
specific heat = 0.951 j/g·°C
Explanation:
Heat flow equation => q = m·c·ΔT
q = heat flow = 4817 joules
m = mass in grams = 140 grams Aluminum
c = specific heat = ?
ΔT = Temperature Change in °C = 98.4°C - 62.2°C = 36.2°C
q = m·c·ΔT => c = q/m·ΔT = 4817j/(140g)(36.2°C) = 0.951 j/g·°C
Answer:
Point of neutralization.
Explanation:
Indicators are used in titration experiments to show when the solution's pH is changing. For instance, a common indicator, phenolphthalein, turns pink in basic solutions, while it remains colorless in acidic solutions. The solution would turn a very light shade of pink when the pH reached above 7.