Test tubes heat small amounts of liquids while boiling tube boils liquids
It’s national park and I have to do the same as I have to get some money drops and then we will have a lot to go back on and I get the same
Answer:
Option C = 1.72 mol
Explanation:
Given data:
Mass of KF = 100 g
Moles of KF = ?
Solution:
First of all we have to calculate the molar mass of KF.
Molar mass of KF = 39.0983 g/mol + 18.998403 g/mol
Molar mass of KF = 58. 0967 g/mol
Formula:
Number of moles = mass/molar mass
Number of moles = 100 g/ 58.0967 g/mol
Number of moles = 1.72 mol
Weight of Chloroform : = 2.862 kg
<h3>Further explanation</h3>
Given
Density 1.483 g/ml
Volume = 1.93 L
Required
Weight of Chloroform
Solution
Density is a quantity derived from the mass and volume
Density is the ratio of mass per unit volume
Density formula:

ρ = density
m = mass
v = volume
Convert density to kg/L :
=1.483g/ml = 1.483 kg/L
So the weight(mass) :
= ρ x V
= 1.483 kg/L x 1.93 L
= 2.862 kg
They have free electron(s) on their outermost energy levels making them good conductors.
They have metallic bonds in their chemical structure.
They readily lose the electrons on their outermost energy levels, to bond with non-metals in ionic bonds to form chemical compounds called "salts"