Answer:
Supersaturated solution.
Explanation:
Hello!
In this case, according to the types of solution in terms of the relative amounts of solute and solvent, we can define a point called solubility at which the amount of solute is no longer dissolved in the solvent; thus, a value of solute/solvent less than the solubility is related to unsaturated solutions, equal to the solubility is related to the saturated solutions and more than the solubility to supersaturated solutions.
Thus, since solubility is temperature-dependent, at 30 °C the solubility of sodium chloride is 36.09 g per 100 mL of water; which means that, since the solution has 50 g of sodium chloride, more than 36.09 g, we infer this is a supersaturated solution.
Best regards!
112.5 g. The production of 50.00 g O2 requires 112.5 g H2O.
a) Write the partially balanced equation for the decomposition of water.
MM = 18.02 32.00
2H2O → O2 + …
Mass/g = 50.00
b) Calculate the <em>moles of O2
</em>
Moles of O2 = 50.00 g O2 × (1 mol O2/16.00 g O2) = 3.1250 mol O2
c) Calculate the <em>moles of water</em>
Moles of H2O = 3.1250 mol O2 × (2 mol H2O/1 mol O2)
= 6.2500 mol H2O
d) Calculate the mass of water
Mass of H2O = 6.2500 mol H2O × (18.02 g H2O/1 mol H2O)
= 112.5 g H2O
Answer:
1. No
2.a. Nothing will happen to figure 1 as both the sides have 30 N.
2.b. The force with 30 N will push 10 N because 10 N is less force than 30 N.
Answer:
Sodium Hydroxide turns blue litmus red .
This is a combustion reaction because it is being combined with oxygen. Then to balance you will put the number of carbons you have or 4 in front of the CO2 and then same with H2. Then you will add up the oxygen and divide it by two to get. 1, (13/2), 4, 5