When we can get the Kinetic energy from this formula KE= 1/2 M V^2
and we can get the potential energy from this formula PE = M g H
we can set that the kinetic energy at the bottom of the fall equals the potential energy at the top so,
KE = PE
1/2 MV^2 = M g H
1/2 V^2 = g H
when V is the velocity, g is an acceleration of gravitational force and H is the height of the fall.
∴ v^2 = 2 * 9.8 * 8 = 156.8
∴ v= √156.8 = 12.5 m/s
15.0 g/342.2965= .0438 mol
I cannot come up with a reaction which you can convert directly from Al to H2O.
But you can convert from Al2O3 to H2O by adding HCL solvent.
<span>17 (VIA)... bromine is a liquid at STP
</span>
Answer:
The answer to your question is: 70.7 %
Explanation:
Equation
Xe + 2F₂ ⇒ XeF₄
limiting reactant = Xe
Xe is the limiting reactant because the ratio is:
theoretical = 131/ 76 = 1.72 g
experimental ratio = 130/100 = 1.3 the amount of F increased.
131.3 g of Xe ------------------ 207 g of XeF₄
130 g of Xe ------------------- x
x = (130 x 207) / 131.3
x = 205 g of XeF₄
% yield = 145 / 205 x 100
% yield = 70.7