Answer:
try c atom i hope this helps!! : )
Explanation:
Answer:
The radial velocity curve describes how fast a star is moving in its orbit around a center of mass ( m )
Curve amplitude : This is the maximum value of the radial velocity curve
Radial velocity shape ; The shape of Radial velocity curve is parabolic in nature
Orbital period : Orbital period is the time taken by the star to make one complete rotation in its orbit
Explanation:
The radial velocity curve describes how fast a star is moving in its orbit around a center of mass ( m ) while Curve amplitude is the maximum value of the radial velocity curve also The shape of Radial velocity curve is parabolic in nature. and Orbital period is the time taken by the star to make one complete rotation in its orbit
I would say the answer is liquids
Answer:
The molarity of the solution increases.
Explanation:
Molarity is the measure of the concentration of the solute in the solution. In this case, the solvent is the sugar solution and the solute is the sugar.
If sugar is ADDED to the already sugary solution, then there would be more sugar. Therefore, the sugar (solute) would increase in number.
This means that the answer is the third choice: The molarity of the solution increases.
The answer would not be the first or second choice because there isn't anything in the question that implies water. It just says sugar solution.
The answer is not the last choice because the sugar concentration does not decrease after you have added more sugar to it. It increases.
Answer:
a, g, c
Explanation:
The conversion of the stable cyclopentane into Trans-1, 2dibromocyclopentane will require three step reactions.
The first is to convert the compound into a cyclopentene, through the addition of Bromine water under heat and photons (light). So option A is the first in the order. This will generate 1 bromocyclopentane through halogenation of the alkane. Secondly, a hot and strong base should be added like the NaOEt, EtOH to remove the added bromine and one atom of hydrogen from the resulting 1 bromocyclopentane in the previous reaction. This will yield cyclopentene, thus making the compound more electrophilic. So option g is required. Thirdly, bromine molecules will be added (C) to take up their places at the two electrophilic regions of the compound to produce Trans-1, 2dibromocyclopentane.