Answer:
121 K
Explanation:
Step 1: Given data
- Initial volume (V₁): 79.5 mL
- Initial temperature (T₁): -1.4°C
- Final volume (V₂): 35.3 mL
Step 2: Convert "-1.4°C" to Kelvin
We will use the following expression.
K = °C + 273.15 = -1.4°C + 273.15 = 271.8 K
Step 3: Calculate the final temperature of the gas (T₂)
Assuming ideal behavior and constant pressure, we can calculate the final temperature of the gas using Charles' law.
V₁/T₁ = V₂/T₂
T₂ = V₂ × T₁/V₁
T₂ = 35.3 mL × 271.8 K/79.5 mL = 121 K
Answer:
lymphocytes
Explanation:
it consists of the b and the t cells
Answer:
The period 4 alkaline-earth metal has the name Calcium. An isotope of this element having 20 neutrons has a mass number of 40.
Explanation:
Looking at the periodic table 4th row for the alkaline-earth metal, we can find Calcium which has an atomic number of 20 (or protons number, or z). The mass number is given by the sum of protons and neutrons. If the number of protons in this case is 20 and the number of neutrons is also 20, the mass number A = 40.
Reactivity - Reactivity refers to how likely or vigorously an atom is to react with other substances. This is usually determined by how easily electrons can be removed (ionization energy) and how badly they want to take other atom's electrons (electronegativity) because it is the transfer/interaction of electrons that is the basis of chemical reactions.
Metals
Period - reactivity decreases as you go from left to right across a period.
Group - reactivity increases as you go down a group
Why? The farther to the left and down the periodic chart you go, the easier it is for electrons to be given or taken away, resulting in higher reactivity.
Non-metals
Period - reactivity increases as you go from the left to the right across a period.
Group - reactivity decreases as you go down the group.
Why? The farther right and up you go on the periodic table, the higher the electronegativity, resulting in a more vigorous exchange of electron