its is making no net release of carbon dioxide to the atmosphere,especially through offsetting emissions by planting trees
Answer:
When the volume will be reduced to 2.50 L, the temperature will be reduced to a temperature of 230.9K
Explanation:
Step 1: Data given
A sample of sulfur hexafluoride gas occupies a volume of 5.10 L
Temperature = 198 °C = 471 K
The volume will be reduced to 2.50 L
Step 2 Calculate the new temperature via Charles' law
V1/T2 = V2/T2
⇒with V1 = the initial volume of sulfur hexafluoride gas = 5.10 L
⇒with T1 = the initial temperature of sulfur hexafluoride gas = 471 K
⇒with V2 = the reduced volume of the gas = 2.50 L
⇒with T2 = the new temperature = TO BE DETERMINED
5.10 L / 471 K = 2.50 L / T2
T2 = 2.50 L / (5.10 L / 471 K)
T2 = 230.9 K = -42.1
When the volume will be reduced to 2.50 L, the temperature will be reduced to a temperature of 230.9K
Answer: 2NOBr(g) ⇌ 2NO(g) + Br2(g)
Explanation: For volume changes in equillibrium, the following are to be taken into consideration:
- Volume changes have no effect on equillibrium system that contains solid or aqueous solutions.
- An increase in volume of an equilibrium system will shift to favor the direction that produces more moles of gas.
- A decrease in volume of an equilibrium system will shift to favor the direction that produces less moles of gas.
- Volume changes will have no effect on the equillibrium system if there is an equal number of moles on both sides of the reaction.
2NOBr(g) ⇌ 2NO(g) + Br2(g) is the equillibrium system because there are more moles of products,therefore an increase in the volume of the reaction will shift to the right and produce more moles of products. Also both reactants and products exist in the gaseous state and does not have equal number of moles.
Answer:
1. Nonmetals.
2. Likely to form anions (except the noble gases).
3. All of these
4. Easily reduced (except the noble gases).
Explanation:
Elements with high electronegativities are found towards the upper right corner of the Periodic Table. Thus, they have all the above properties.
<span>2AlPO4 ( aq) + 3MgCl2 (aq) -> Mg3(PO4)2 (s) + 2AlCl3 (aq) </span>
<span>Right answer is D
</span>