Event 1 is an example of a chemical reaction.
<u>Explanation:</u>
Whenever if two solutions are mixed, then if there is any color change, or evolution of any vapors, bubbles or gas formation or if there is any formation of a color or white precipitate confirms that the occurrence of a chemical reaction.
If nothing happens said above then it is said that there is no chemical reaction occurs.
Here in the event 1 a clear liquid in one beaker poured into clear liquid in beaker 2 then there is a formation of orange liquid, which means there is a formation of a new colored liquid confirms that the chemical reaction occurred.
My thought would be B) gases.
I could be wrong but that's what i'd say
Answer:
Approximately
.
Explanation:
Balanced equation for this reaction:
.
Look up the relative atomic mass of elements in the limiting reactant,
, as well as those in the product of interest,
:
Calculate the formula mass for both the limiting reactant and the product of interest:
.
.
Calculate the quantity of the limiting reactant (
) available to this reaction:
.
Refer to the balanced equation for this reaction. The coefficients of the limiting reactant (
) and the product (
) are both
. Thus:
.
In other words, for every
of
formula units that are consumed,
of
formula units would (in theory) be produced. Thus, calculate the theoretical yield of
in this experiment:
.
Calculate the theoretical yield of this experiment in terms of the mass of
expected to be produced:
.
Given that the actual yield in this question (in terms of the mass of
) is
, calculate the percentage yield of this experiment:
.
Answer:
Elements and compounds are two types of pure substances.
Explanation:
Answer:
High activation energy is the reason behind unsuccessful reaction.
Explanation:
There are two types of reaction: (1) thermodynamically controlled reaction and (2) kinetically controlled reaction.
Thermodynamically controlled reaction are associated with change in enthalpy during reaction. More negative the enthalpy change, more favored will be the reaction.
Kinetically controlled reaction are associated with activation energy of a reaction. The lower the activation energy value, the more rapid will be the reaction.
Here, reaction between
and
is thermodynamically favored due to negative enthalpy change but the high activation energy does not allow the reaction to take place by simple mixing.