Jupiter's atmosphere is composed predominantly of hydrogen and helium, but if you have to select any one option then we can look at the percentage of existence of these elements that would be
<span>90 percent hydrogen.
remaining 10 percent is helium
so choose Hydrogen.</span>
<h2>
Answer</h2>
2.626984127 m
<h2>
Explanation:</h2><h2>
</h2>
You have to know the equation that relates wavelength, frequency, and velocity (it's like speed but a bit different).
v = f x λ
where:
v = velocity
f = frequency
λ = Wavelength
Rearrange to make λ subject:
λ = v / f
We've been given 331 as the speed, 126 as the frequency. Sub it into the equation:
331 / 126 = 2.626984127 m
Answer:
The molarity of the solution: 0,27M
Explanation:
First , we calculate the weight of 1 mol of NaCl:
Weight 1mol NaCl= Weight Na + Weight Cl= 23 g+ 35, 5 g= 58, 5 g/mol
58,5 g---1 mol NaCl
64 g--------x= (64 g x1 mol NaCl)/58,5 g= 1, 09 mol NaCl
A solution molar--> moles of solute in 1 L of solution:
4 L-----1,09 mol NaCl
1L----x0( 1L x1,09 mol NaCl)/4L =0,27moles NaCl--->0,27M
Food that contains nuts should be prepared last
Answer:
pKa = 3.675
Explanation:
∴ <em>C</em> X-281 = 0.079 M
∴ pH = 2.40
let X-281 a weak acid ( HA ):
∴ HA ↔ H+ + A-
⇒ Ka = [H+] * [A-] / [HA]
mass balance:
⇒<em> C</em> HA = 0.079 M = [HA] + [A-]
⇒ [HA] = 0.079 - [A-]
charge balance:
⇒ [H+] = [A-] + [OH-]... [OH-] is negligible; it comes from to water
⇒ [H+] = [A-]
∴ pH = - log [H+] = 2.40
⇒ [H+] = 3.981 E-3 M
replacing in Ka:
⇒ Ka = [H+]² / ( 0.079 - [H+] )
⇒ Ka = ( 3.981 E-3 )² / ( 0.079 - 3.981 E-3 )
⇒ Ka = 2.113 E-4
⇒ pKa = - Log ( 2.113 E-4 )
⇒ pKa = 3.675