Answer:
if its a multiple question answer its hydroden and carbon
if not its carbon
Answer:
2Mg + O₂ → 2MgO
Explanation:
Chemical equation:
Mg + O₂ → MgO
Balanced chemical equation:
2Mg + O₂ → 2MgO
The balanced equation s given above and it completely follow the law of conservation of mass.
Law of conservation of mass:
According to the law of conservation mass, mass can neither be created nor destroyed in a chemical equation.
This law was given by french chemist Antoine Lavoisier in 1789. According to this law mass of reactant and mass of product must be equal, because masses are not created or destroyed in a chemical reaction.
Steps to balanced the equation:
Step 1:
Mg + O₂ → MgO
Mg = 1 Mg = 1
O = 2 O = 1
Step 2:
2Mg + O₂ → MgO
Mg = 2 Mg = 1
O = 2 O = 1
Step 3:
2Mg + O₂ → 2MgO
Mg = 2 Mg = 2
O = 2 O = 2
Answer:
The answer to the question is
The pressure of carbon dioxide after equilibrium is reached the second time is 0.27 atm rounded to 2 significant digits
Explanation:
To solve the question, we note that the mole ratio of the constituent is proportional to their partial pressure
At the first trial the mixture contains
3.6 atm CO
1.2 atm H₂O (g)
Total pressure = 3.6+1.2= 4.8 atm
which gives
3.36 atm CO
0.96 atm H₂O (g)
0.24 atm H₂ (g)
That is
CO+H₂O→CO(g)+H₂ (g)
therefore the mixture contained
0.24 atm CO₂ and the total pressure =
3.36+0.96+0.24+0.24 = 4.8 atm
when an extra 1.8 atm of CO is added we get Increase in the mole fraction of CO we have one mole of CO produces one mole of H₂
At equilibrium we have 0.24*0.24/(3.36*0.96) = 0.017857
adding 1.8 atm CO gives 4.46 atm hence we have
(0.24+x)(0.24+x)/(4.46-x)(0.96-x) = 0.017857
which gives x = 0.031 atm or x = -0.6183 atm
Dealing with only the positive values we have the pressure of carbon dioxide = 0.24+0.03 = 0.27 atm
When edible oils are idle and stored for a long amount of time, they undergo oxidation due to the exposure to oxygen. This oxidation causes rancidity in oils.