Boiling point of a compound is determined by the strength of intermolecular forces of attraction between the molecules present in it. Stronger the intermolecular forces of attraction, higher will be the boiling point.
Ionic compounds show ion-ion interactions which are the strongest among all. Ion-dipole interactions are shown when ionic solutes are dissolved in polar solvents. Hydrogen bonding is also a relatively stronger force that is present between H atom and an electronegative atom like F, O and N(
) . All polar molecules show dipole-dipole interaction (
and
). Dispersion forces are the weakest intermolecular forces due to momentary dipoles between electron clouds and nucleus.
Among the given compounds,
has dispersion forces as the major intermolecular forces of attraction. So they they exhibit the weakest IMF, hence have the lowest boiling point.
DE = dH - PdV
<span>2 H2O(g) → 2 H2(g) + O2(g) </span>
<span>You can see that there are 2 moles of gas in the reactants and 3 moles of gas in the products. </span>
<span>1 moles of ideal gas occupies the same volume as 1 mole of any other ideal gas under the same conditions of temp and pressure. </span>
<span>Since it is done under constant temp and pressure that means the volume change will be equal to the volume of 1 mole of gas </span>
<span>2 moles reacts to form 3 moles </span>
<span>The gas equation is </span>
<span>PV = nRT </span>
<span>P = pressure </span>
<span>V = volume (unknown) </span>
<span>n = moles (1) </span>
<span>R = gas constant = 8.314 J K^-1 mol^-1 </span>
<span>- the gas constant is different for different units of temp and pressure (see wikki link) in this case temp and pressure are constant, and we want to put the result in an equation that has Joules in it, so we select 8.314 JK^-1mol^-1) </span>
<span>T = temp in Kelvin (kelvin = deg C + 273.15 </span>
<span>So T = 403.15 K </span>
<span>Now, you can see that PV is on one side of the equation, and we are looking to put PdV in our dE equation. So we can say </span>
<span>dE = dH -dnRT (because PV = nRT) </span>
<span>Also, since the gas constant is in the unit of Joules, we need to convert dH to Joules </span>
<span>dH = 483.6 kJ/mol = 483600 Joules/mol </span>
<span>dE = 483600 J/mol - (1.0 mol x 8.314 J mol^-1K-1 x 403.15 K) </span>
<span>dE = 483600 J/mol - 3351.77 J </span>
<span>dE = 480248.23 J/mol </span>
<span>dE = 480.2 kJ/mol </span>
B) 40%
The balanced equation indicates that for every 3 moles of H2 used, 2 moles of NH3 will be produced. So the reaction if it had 100% yield would produce (2.00 / 3) * 2 = 1.333333333 moles of NH3. But only 0.54 moles were produced. So the percent yield is 0.54 / 1.3333 = 0.405 = 40.5%. This is a close enough match to option "b" to be considered correct.
1) You need to get volume of both temperatures by using first attached formula V= Mass/Density

2) Using the second formula you get the height of 0 degree

(radius in cm is

3) Then with h1 you can easily get the height of 25 degrees
Subtract 943.5 cm - 939.2 cm, and obtain a rise in mercury height of 4.3 cm