Answer:
a. 59 m/atm
Explanation:
- To solve this problem, we must mention Henry's law.
- <em>Henry's law states that at a constant temperature, the amount of a given gas dissolved in a given type and volume of liquid is directly proportional to the partial pressure of that gas in equilibrium with that liquid.</em>
- It can be expressed as: C = KP,
C is the concentration of the solution (C = 1.3 M).
P is the partial pressure of the gas above the solution (P = 0.022 atm).
K is the Henry's law constant (K = ??? M/atm),
∵ C = KP.
∴ K = C/P = (1.3 M)/(0.022 atm) = 59.0 M/atm.
we are given the the two reactants: AgNO3 and Na2CO3 and is asked to write a balanced equation and a net ionic equation for the reaction of the two. This is a double-replacement reaction:
2AgNO3 (aq)+ Na2CO3 (aq)= Ag2CO3 + 2NaNo3 (aq)
2 Ag + + 2 N03- + 2Na+ + CO32- = Ag2CO3 + 2 Na+ 2NO3-
cancelling the spectator ions, 2Ag + + CO32- = Ag2CO3
Answer:
It is not a gas because its particles do not have large space between them.
Answer: The molecular mass of this compound is 131 g/mol
Explanation:
Depression in freezing point:
where,
= depression in freezing point =
= freezing point constant = 
m = molality
i = Van't Hoff factor = 1 (for non-electrolyte)
= mass of solute = 0.49 g
= mass of solvent (cyclohexane) = 20.00 g
= molar mass of solute = ?
Now put all the given values in the above formula, we get:
Therefore, the molar mass of solute is 131 g/mol
both of the answers are bone
Explanation:
Mark me as brainliest