Answer:
Yes
Explanation:
Is this a question or what?
Answer:
More oxygen is needed to produce more energy, and more carbon dioxide waste must be removed from the body.
Explanation:
Oxygen helps our cells work harder by breaking down the nutrients we get from food like sugars. With sugars and oxygen, our cells can create the energy they need to function. This process also produces carbon dioxide. The carbon dioxide produced is a waste product and needs to be removed. During exercise, your body needs more energy, which means your tissues consume more oxygen than they do at rest. Consuming more oxygen means you will also produce more carbon dioxide because your metabolic rate is elevated. The lungs and respiratory system allow oxygen in the air to be taken into the body, while also letting the body get rid of carbon dioxide in the air breathed out. When you breathe in, the diaphragm moves downward toward the abdomen, and the rib muscles pull the ribs upward and outward.
Answer:
The effects of supercritical CO2 (SC-CO2) on the microbiological, sensory (taste, odour, and colour), nutritional (vitamin C content), and physical (cloud, total acidity, pH, and °Brix) qualities of orange juice were studied. The CO2 treatment was performed in a 1 litre capacity double-walled reactor equipped with a magnetic stirring system. Freshly extracted orange juice was treated with supercritical CO2, pasteurised at 90°C, or left untreated. There were no significant differences in the sensory attributes and physical qualities between the CO2 treated juice and freshly extracted juice. The CO2 treated juice retained 88% of its vitamin C, while the pasteurised juice was notably different from the fresh juice and preserved only 57% of its vitamin C content. After 8 weeks of storage at 4°C, there was no microbial growth in the CO2 treated juice.
We can use the combined gas law equation to solve for the initial volume

parameters for the first instance are on the left side and parameters for the second instance are on the right side of the equation
substituting the values in the equation

V = 8.50 L
the initial volume is 8.50 L
Answer:
for what school? It's different for all sadly :(
Explanation: