Answer:
The cannon recoils with a force of 332.5 N
Explanation:
By Newton's third law Recoil force on cannon = Force in shell.
Force in shell = Mass of shell x Acceleration of shell
Mass of shell = 3.5 kg
Acceleration of shell = 95 m/s²
Force in shell = 3.5 x 95 = 332.5 N
Recoil force on cannon = 332.5 N
So, the cannon recoils with a force of 332.5 N
Explanation:
An endothermic reaction is a type of of chemical reaction in which energy is absorbed from the surrounding. The temperature of the surrounding decreases.
An Exothermic reaction is a type of of chemical reaction in which energy is released into the surrounding. The temperature of the surrounding increases.
a)When an endothermic reaction takes place in test tube the temperature of the surrounding(here the outside wall of the test tube) will decrease which can be felt by touching the outside of the test tube.
b) Burning a candle
,Lighting a gas stove and running a car's engine all are example of exothermic reaction because energy is releases into surroundings. Where as using an instant cold pack is an example endothermic reaction in which energy is absorbed from the surrounding.
c) The diagram is of an exothermic reaction because the energy of the reactants is higher than the energy of the products.The difference in the energies of these two is the energy which was being released on completion of reaction.
In a transverse wave the particle displacement is perpendicular to the direction of wave propagation. The animation below shows a one-dimensional transverse plane wave propagating from left to right. The particles do not move along with the wave; they simply oscillate up and down about their individual equilibrium positions as the wave passes by. Pick a single particle and watch its motion.
The S waves (Secondary waves) in an earthquake are examples of Transverse waves. S waves propagate with a velocity slower than P waves, arriving several seconds later.
<span>
</span>
Answer:
The solar system is enormous, and interstellar space is even bigger. One astronomical unit is equal to 150 million kilometers. This makes it much easier to count the distances if they're in counts of Astronomic Units instead of having to count everything in millions or billions of kilometers
Explanation:
Answer:
The intensity of light from the 1mm from the central maximu is 
Explanation:
From the question we are told that
The wavelength is 
The width of the slit is
The distance from the screen is 
The intensity at the central maximum is 
The distance from the central maximum is 
Let z be the the distance of a point with intensity I from central maximum
Then we can represent this intensity as
Now the relationship between D and z can be represented using the SOHCAHTOA rule i.e

if the angle between the the light at z and the central maximum is small
Then 
Which implies that

substituting this into the equation for the intensity
![I = I_o [\frac{sin [\frac{\pi w}{\lambda} \cdot \frac{z}{D} ]}{\frac{\pi w z}{\lambda D\frac{x}{y} } } ]](https://tex.z-dn.net/?f=I%20%3D%20I_o%20%5B%5Cfrac%7Bsin%20%5B%5Cfrac%7B%5Cpi%20w%7D%7B%5Clambda%7D%20%5Ccdot%20%5Cfrac%7Bz%7D%7BD%7D%20%20%5D%7D%7B%5Cfrac%7B%5Cpi%20w%20z%7D%7B%5Clambda%20D%5Cfrac%7Bx%7D%7By%7D%20%7D%20%7D%20%5D)
given that 
We have that
![I = I_o [\frac{sin[\frac{3.142 * 0.45*10^{-3}}{(620 *10^{-9})} \cdot \frac{1*10^{-3}}{3} ]}{\frac{3.142 * 0.45*10^{-3}*1*10^{-3} }{620*10^{-9} *3} } ]^2](https://tex.z-dn.net/?f=I%20%3D%20I_o%20%5B%5Cfrac%7Bsin%5B%5Cfrac%7B3.142%20%2A%200.45%2A10%5E%7B-3%7D%7D%7B%28620%20%2A10%5E%7B-9%7D%29%7D%20%5Ccdot%20%5Cfrac%7B1%2A10%5E%7B-3%7D%7D%7B3%7D%20%5D%7D%7B%5Cfrac%7B3.142%20%2A%200.45%2A10%5E%7B-3%7D%2A1%2A10%5E%7B-3%7D%20%7D%7B620%2A10%5E%7B-9%7D%20%2A3%7D%20%7D%20%5D%5E2)
![=I_o [\frac{sin(0.760)}{0.760}] ^2](https://tex.z-dn.net/?f=%3DI_o%20%5B%5Cfrac%7Bsin%280.760%29%7D%7B0.760%7D%5D%20%5E2)
