Answer: 5.8 m/s squared
Explanation: just got that question lol
Answer:

Given:
Mass (m) = 3.0 kg
Uniform speed (v) = 20 m/s
Length of string (r) = 40 cm = 0.4 m
To Find:
Tension in the string (T)
Explanation:
Tension (T) is the string will be equal to centripetal force (
).

Substituting value of m, v & r in the equation:


Tension in the string (T) = 3 kN
Answer:
Resultant is 152 N at 28.5 degrees south to the 100 N force
Explanation:
Answer:

Explanation:
This is a projectile motion problem. We will first separate the motion into x- and y-components, apply the equations of kinematics separately, then we will combine them to find the initial velocity.
The initial velocity is in the x-direction, and there is no acceleration in the x-direction.
On the other hand, there no initial velocity in the y-component, so the arrow is basically in free-fall.
Applying the equations of kinematics in the x-direction gives

For the y-direction gives

Combining both equation yields the y_component of the final velocity

Since we know the angle between the x- and y-components of the final velocity, which is 180° - 2.8° = 177.2°, we can calculate the initial velocity.
