1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lidiya [134]
3 years ago
12

Use the information below to answer questions

Physics
1 answer:
Ulleksa [173]3 years ago
5 0

Answer:

The charges are q₁  = 2 × 10⁻⁸ C and  q₂ = 3 × 10⁻⁸ C

Explanation:

Here is the complete question

Two identical tiny balls have charge q1 and q2. The repulsive force one exerts on the other when they are 20cm apart is 1.35 X 10-4 N. after the balls are touched together and then represented once again to 20cm, now the repulsive force is found to be 1.40 X 10-4 N. find the charges q1 and q2.

Solution

The force F = 1.35 × 10⁻⁴ N when the charges are separated a distance of r = 20 cm = 0.2 m is given by

F = kq₁q₂/r₁²

q₁q₂ = Fr₁²/k

q₁q₂ = 1.35 × 10⁻⁴ N × (0.2 m)²/9 × 10⁹ Nm²/C² = 0.054/9 × 10⁻¹³ C² = 0.006 × 10⁻¹³ C² = 6 × 10⁻¹⁶ C²

q₁q₂ = 6 × 10⁻¹⁶ C² (1)

When the charges are brought together, the charge is now q = (q₁ + q₂)/2

The new repulsive force F = 1.406 × 10⁻⁴ N  at a distance of r₂ = 20 cm = 0.2 m is then

F₂ = kq²/r₂²

q² = F₂r₂²/k = 1.406 × 10⁻⁴ N × (0.2 m)²/9 × 10⁹ Nm²/C² = 0.00625 × 10⁻¹³ C² = 6.25 × 10⁻¹⁶ C²

q² = 6.25 × 10⁻¹⁶ C²

q = √(6.25 × 10⁻¹⁶) C

q = 2.5 × 10⁻⁸ C

(q₁ + q₂)/2 =  2.5 × 10⁻⁸ C

(q₁ + q₂) = 2 × 2.5 × 10⁻⁸ C

q₁ + q₂ = 5 × 10⁻⁸ C (2)

q₁  = 5 × 10⁻⁸ C - q₂  (3)

Substituting equation (3) into (1), we have

(5 × 10⁻⁸ C - q₂)q₂ = 6 × 10⁻¹⁶ C²

Expanding the bracket, we have

(5 × 10⁻⁸ C)q₂ - q₂² = 6 × 10⁻¹⁶ C²

So, q₂² - (5 × 10⁻⁸ C)q₂ + 6 × 10⁻¹⁶ C² = 0

Using the quadratic formula to find q₂

q_{2} = \frac{-(-5 X 10^{-8} )+/- \sqrt{(-5 X 10^{-8} )^{2} - 4X1X6 X 10^{-16} } }{2X1}\\  = \frac{5 X 10^{-8} )+/- \sqrt{25 X 10^{-16}  - 24 X 10^{-16} } }{2}\\= \frac{5 X 10^{-8} )+/- \sqrt{1 X 10^{-16} } }{2}\\= \frac{5 X 10^{-8} )+/- 1 X 10^{-8} }{2}\\= \frac{5 X 10^{-8} + 1 X 10^{-8} }{2} or \frac{5 X 10^{-8}  - 1 X 10^{-8} }{2}\\= \frac{6 X 10^{-8} }{2} or \frac{4 X 10^{-8}}{2}\\= 3 X 10^{-8} C or 2 X 10^{-8} C

q₁  = 5 × 10⁻⁸ C - q₂

q₁  = 5 × 10⁻⁸ C - 3 × 10⁻⁸ C or 5 × 10⁻⁸ C - 2 × 10⁻⁸ C

q₁  = 2 × 10⁻⁸ C or 3 × 10⁻⁸ C

So the charges are q₁  = 2 × 10⁻⁸ C and  q₂ = 3 × 10⁻⁸ C

You might be interested in
For questions 1 - 4 complete the representations for the four patterns below. Provide the mathematical
larisa [96]

Answer:

Explanation:

1

2

3

6 0
3 years ago
Which of the following statements best describes the second law of
Serga [27]

Answer:

B

Explanation:

Heat flows from hot to cold to lower the temperature of hot areas and increase temperature of cold areas. The end result is that the 2 areas have the same temperature, thus increasing entropy.

7 0
3 years ago
A 1 036-kg satellite orbits the Earth at a constant altitude of 98-km. (a) How much energy must be added to the system to move t
Veronika [31]

Answer:

a) The Energy added should be 484.438 MJ

b) The  Kinetic Energy change is -484.438 MJ

c) The Potential Energy change is 968.907 MJ

Explanation:

Let 'm' be the mass of the satellite , 'M'(6×10^{24} be the mass of earth , 'R'(6400 Km) be the radius of the earth , 'h' be the altitude of the satellite and 'G' (6.67×10^{-11} N/m) be the universal constant of gravitation.

We know that the orbital velocity(v) for a satellite -

v=\sqrt{\frac{Gmm}{R+h} }         [(R+h) is the distance of the satellite   from the center of the earth ]

Total Energy(E) = Kinetic Energy(KE) + Potential Energy(PE)

For initial conditions ,

h = h_{i} = 98 km = 98000 m

∴Initial Energy (E_{i})  = \frac{1}{2}mv^{2} + \frac{-GMm}{(R+h_{i} )}

Substituting v=\sqrt{\frac{GMm}{R+h_{i} } } in the above equation and simplifying we get,

E_{i} = \frac{-GMm}{2(R+h_{i}) }

Similarly for final condition,

h=h_{f} = 198km = 198000 m

∴Final Energy(E_{f}) = \frac{-GMm}{2(R+h_{f}) }

a) The energy that should be added should be the difference in the energy of initial and final states -

∴ ΔE = E_{f} - E_{i}

        = \frac{GMm}{2}(\frac{1}{R+h_{i} } - \frac{1}{R+h_{f} })

Substituting ,

M = 6 × 10^{24} kg

m = 1036 kg

G = 6.67 × 10^{-11}

R = 6400000 m

h_{i} = 98000 m

h_{f} = 198000 m

We get ,

ΔE = 484.438 MJ

b) Change in Kinetic Energy (ΔKE) = \frac{1}{2}m[v_{f} ^{2} - v_{i} ^{2}]

                                                          = \frac{GMm}{2}[\frac{1} {R+h_{f} } - \frac{1} {R+h_{i} }]

                                                          = -ΔE                                                            

                                                          = - 484.438 MJ

c)  Change in Potential Energy (ΔPE) = GMm[\frac{1}{R+h_{i} } - \frac{1}{R+h_{f} }]

                                                             = 2ΔE

                                                             = 968.907 MJ

3 0
3 years ago
HURRY!!!!
Bingel [31]
I'm not exactly sure but I'm thinking that it's the last one. Sorry if I'm wrong
4 0
3 years ago
Read 2 more answers
While playing a video game on your laptop, the laptop gets very hot. Which Thermodynamics Law does this exemplify?
Ksivusya [100]

Answer

The dedicated graphics card is used when performing hardware-intensive tasks so as to ensure efficiency and balanced performance. However, it uses more power and thus produces more heat. When the cooling system is not sufficient or the room is not well ventilated, your PC begins to overheat while playing games.     Explanation: How does the second law of thermodynamics relate to the direction of heat flow? Heat of itself never flows from a cold object to a hot object. ... The second law expresses the maximum efficiency of a heat engine in terms of hot and cold temperatures. one of these answers i am not sure

3 0
3 years ago
Other questions:
  • Why are radio waves considered harmless while ultraviolet waves and x-rats considered harmful
    13·1 answer
  • Where does denitrification happen?
    8·1 answer
  • The density of atmosphere (measured in kilograms/meter3) on a certain planet is found to decrease as altitude increases (as meas
    14·1 answer
  • How long dose long term alcohol abuse affect the liver?
    14·2 answers
  • Why is it important for scientists to replicate each other’s experiments?
    14·2 answers
  • Two speakers are spaced 15 m apart and are both producing an identical sound wave. You are standing at a spot as pictured. What
    6·2 answers
  • Try to move the magnet back and forth between the two coils. Explain the motion of the magnet and what might be causing this.
    8·1 answer
  • Which event demonstrates electromagnetic waves transferring energy?
    8·2 answers
  • A 2kg watermelon is dropped from a 4m tall roof a) use the appropriate kinematic equations to determine the instantaneous veloci
    10·1 answer
  • Cork has a density of about 0.60 g/cm3 . Cork will partially float in water which has a density of 1.0 g/cm3 . If the piece of c
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!