Answer:
6495.19 Joule
Explanation:
F = Weight of the crate = 250 N
d = Distance the cart is pushed = 30 m
θ = Angle of inclination = 60°
The weight of the crate will be resloved into two components
Fdsinθ and Fdcosθ
Work done by the force of gravity is
W = Fdsinθ
⇒W = 250×30×sin60
⇒W = 6495.19 Joule
∴ The work done by the force of gravity is 6495.19 Joule
Heck yeah i'll follow!!!!!!
Answer:
t=40s,
Explanation:
If you can swim in still water at 0.5m/s, the shortest time it would take you to swim from bank to bank across a 20m wide river, if the water flows downstream at a rate of 1.5m/s, is most nearly:
from the question the swimmer will have a velocity which is equal to the sum of the speed of the water and the velocity to swi across the bank
Vt=v1+v2
the time is takes to swim across the bank will be
DY=Dv*t
DY=distance across the bank
Dv=ther velocity of the swimmer across the bank
t=20/ 0.5m/s,
t=40s, time it takes to swim across the bank
velocity is the rate of displacement
displacement is distance covered in a specific direction
v^2-u^2=2 x a x d
25^2-0^2=2 x a x 70
625-0=140 x a
625=140a
a=625/140
a=4.46 m/s^2
im not very sure but i think this is how you do this