A coin has one of two outcomes: heads or tails.
Each has an equal probability of occurring, meaning that they each have a 50% chance to occur. (They need to add up to 100% because they include all the outcomes, divide that into two equal parts and...)
This is what we call theoretical probability. It's a guess as to how probability <em>should</em> work. Like in the experiment, it's not always going to be 50-50.
What <em>actually happens</em> is called experimental probability. This may vary slightly from theoretical probability because you can't predict probability with complete certainty, you can only say what is <em>most likely to happen</em>.
We want to find the probability of getting heads in our experiment so we can compare it to the theoretical outcome. To do this, we need to compare the number of heads to the total number of outcomes.
We have 63 heads, and a total of 150 coin flips.
That makes the probability of getting a heads 63/150.
The hard part is getting this ratio into a percent.
You can try simply dividing, but you should be able to notice something here.
SInce the top and the bottom of our fraction are both divisible by 3, we can <em>simiplify</em>.
63 ÷ 3 = 21
150 ÷ 3 = 50
So we could say that 63/150 = 21/50.
A percent is basically a fraction out of 100.
Just like you can divide the parts of a ratio by the same number and it will stay the same, you can also multiply. To get the fraction out of 100, let's multiply by 2.
(since 50 × 2 = 100)
21 × 2 = 42
50 × 2 = 100
21/50 = 42/100 = 42%
Comparing our experimental probability to the theoretical one...it is 8% lower.
Answer:
C) There is not sufficient evidence to support the claim that the mean attendance is greater than 523.
Step-by-step explanation:
Let μ be the the average attendance at games of the football team
The claim: the average attendance at games is over 523
Null and alternative hypotheses are:
: μ=523
: μ>523
The conclusion is failure to reject the null hypothesis.
This means that <em>test statistic</em> is lower than <em>critical value</em>. Therefore it is not significant, there is no significant evidence to accept the <em>alternative</em> hypothesis.
That is no significant evidence that the average attendance at games of the football team is greater than 523.
The area of a rectangle is 108cm (squared. the ratio of the width to the length is 3:4
It is equal to 26 if you didn’t understand you can ask more questions and I’ll help
Answer:
2) 62.5 wpm
3) 12.7 miles per gallon
4)18 commercials per hour
5) 22.9 ounces per dollar
Step-by-step explanation:
2) 500 words / 8 minutes = 62.5 words per 1 minute
3) 216 miles / 17 gallons = 12.7 miles per gallon
4) 36 commercials / 2 hours = 18 commercials per hour
5) 64 oz / $2.79 = 22.9 oz per $1