The answer is already in the blank for, its was greater
Answer:
A) if each astronaut breathes about 500 cm³, the total volume of air breathed in a year is 14716.8m³.
B) The Diameter of this spherical space station should be 30.4m
Explanation:
The breathing frequency (according to Rochester encyclopedia) is about 12-16 breath per minute. if we take the mean value (14 breath per minute), we can estimate the total breaths of a person along a year:

If we multiply this for the number of people in the station and the volume each breath needs, we obtain the volume breathed in a year.
The volume of a sphere is:

So the diameter is:
![D=2r=2\sqrt[3]{\frac{3V_{sph}}{4\pi}} =30.4m](https://tex.z-dn.net/?f=D%3D2r%3D2%5Csqrt%5B3%5D%7B%5Cfrac%7B3V_%7Bsph%7D%7D%7B4%5Cpi%7D%7D%20%3D30.4m)
Answer:
F = 50636.873 N
Explanation:
given,
bucket of water = 700-kg
length of cable = 20 m
Speed = 40 m/s
angle of the cable = 38.0°
let air resistance be = F
tension in rope be = T
T cos 38° = m×g..................(1)
..........(2)
equation (1)/(2)


F = 50636.873 N
Hence the force exerted on the bucket is equal to F = 50636.873 N
Answer:
To calculate the tension on a rope holding 1 object, multiply the mass and gravitational acceleration of the object. If the object is experiencing any other acceleration, multiply that acceleration by the mass and add it to your first total.
Explanation:
The tension in a given strand of string or rope is a result of the forces pulling on the rope from either end. As a reminder, force = mass × acceleration. Assuming the rope is stretched tightly, any change in acceleration or mass in objects the rope is supporting will cause a change in tension in the rope. Don't forget the constant acceleration due to gravity - even if a system is at rest, its components are subject to this force. We can think of a tension in a given rope as T = (m × g) + (m × a), where "g" is the acceleration due to gravity of any objects the rope is supporting and "a" is any other acceleration on any objects the rope is supporting.[2]
For the purposes of most physics problems, we assume ideal strings - in other words, that our rope, cable, etc. is thin, massless, and can't be stretched or broken.
As an example, let's consider a system where a weight hangs from a wooden beam via a single rope (see picture). Neither the weight nor the rope are moving - the entire system is at rest. Because of this, we know that, for the weight to be held in equilibrium, the tension force must equal the force of gravity on the weight. In other words, Tension (Ft) = Force of gravity (Fg) = m × g.
Assuming a 10 kg weight, then, the tension force is 10 kg × 9.8 m/s2 = 98 Newtons.
Answer: The light bends because light travels fast but it slows down in a denser medium. For example light refracts in water or it bends after passing through air. When light passes through air ( a less dense medium ) then through water ( a more dense medium ) the beam of light bends because light travels more slowly in a denser medium then it picks up its pace again once it passes. The density of the substance determines how much the light is refracted. I hope this makes sense and I hope this answered your question!! :)