Ok but y I thought it was upside down tho...
The peak output of our sun is between the yellow-green band.
According to KE = (3/2)kT
reducing temperature, in KELVIN, by half, average KE is reduced by half.
Answer:
Explanation:
given,
radius of loop = 12.1 m
to find the minimum speed transverse by the rider to not to fall out upside down
centripetal force =
gravitational force = m g
computing both the equation]
Answer:
a,)3.042s
b)4.173s
c)3.281s
Explanation:
For a some pendulum the period in seconds T can be calculated using below formula
T=2π√(L/G)
Where L = length of pendulum in meters
G = gravitational acceleration = 9.8 m/s²
Then we are told to calculate
(a) What is the period of small oscillations for this pendulum if it is located in an elevator accelerating upward at 3.00 m/s2?
Since oscillations for this pendulum is located in the elevator that is accelerating upward at 3.00 then
use G = 9.8 + 3.0 = 12.8 m/s²
Period T=2π√(L/G)
T= 2π√(3/12.8)
T=3.042s
b) (b) What is the period of small oscillations for this pendulum if it is located in an elevator accelerating downward at 3.00 m/s2?
G = 9.8 – 3.0 = 6.8 m/s²
T= 2π√(3/6.8)
T=4.173s
C)(c) What is the period of this pendulum if it is placed in a truck that is accelerating horizontally at 3.00 m/s2?
Net acceleration is
g'= √(g² + a²)
=√(9² + 3²)
Then period is
T=2π√(3/11)
T=3.281s