1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Airida [17]
3 years ago
5

How much work is done by the force lifting a

Physics
1 answer:
Ann [662]3 years ago
3 0

The work done in lifting the hamburger is equal to the increase in gravitational potential energy of the hamburger, given by

W=\Delta U=mg \Delta h

where

m=0.1 kg is the mass of the hamburger

g=9.81 m/s^2 is the gravitational acceleration

\Delta h=0.3 m is the increase in height of the hamburger


Substituting numbers into the equation, we find

W=(0.1 kg)(9.81 m/s^2)(0.3 m)=0.3 J


So, the correct answer is

(3) 0.3 J

You might be interested in
Which is harder, air tight or water tight seals?
Vladimir [108]
Should be an air tight seal
4 0
3 years ago
An instrument is defective for all of the following conditions EXCEPT:_______
NARA [144]

Answer:

I believe its C

6 0
3 years ago
A satellite is in a circular orbit around Mars, which has a mass M = 6.40 × 1023 kg and radius R = 3.40 ×106 m.
Pepsi [2]

Answer:

a) The orbital speed of a satellite with a orbital radius R (in meters) will have an orbital speed of approximately \displaystyle \sqrt\frac{4.27 \times 10^{13}}{R}\; \rm m \cdot s^{-1}.

b) Again, if the orbital radius R is in meters, the orbital period of the satellite would be approximately \displaystyle 9.62 \times 10^{-7}\, R^{3/2}\; \rm s.

c) The orbital radius required would be approximately \rm 2.04 \times 10^7\; m.

d) The escape velocity from the surface of that planet would be approximately \rm 5.01\times 10^3\; m \cdot s^{-1}.

Explanation:

<h3>a)</h3>

Since the orbit of this satellite is circular, it is undergoing a centripetal motion. The planet's gravitational attraction on the satellite would supply this centripetal force.

The magnitude of gravity between two point or spherical mass is equal to:

\displaystyle \frac{G \cdot M \cdot m}{r^{2}},

where

  • G is the constant of universal gravitation.
  • M is the mass of the first mass. (In this case, let M be the mass of the planet.)
  • m is the mass of the second mass. (In this case, let m be the mass of the satellite.)  
  • r is the distance between the center of mass of these two objects.

On the other hand, the net force on an object in a centripetal motion should be:

\displaystyle \frac{m \cdot v^{2}}{r},

where

  • m is the mass of the object (in this case, that's the mass of the satellite.)
  • v is the orbital speed of the satellite.
  • r is the radius of the circular orbit.

Assume that gravitational force is the only force on the satellite. The net force should be equal to the planet's gravitational attraction on the satellite. Equate the two expressions and solve for v:

\displaystyle \frac{G \cdot M \cdot m}{r^{2}} = \frac{m \cdot v^{2}}{r}.

\displaystyle v^2 = \frac{G \cdot M}{r}.

\displaystyle v = \sqrt{\frac{G \cdot M}{r}}.

Take G \approx 6.67 \times \rm 10^{-11} \; m^3 \cdot kg^{-1} \cdot s^{-2},  Simplify the expression v:

\begin{aligned} v &= \sqrt{\frac{G \cdot M}{r}} \cr &= \sqrt{\frac{6.67 \times \rm 10^{-11} \times 6.40 \times 10^{23}}{r}} \cr &\approx \sqrt{\frac{4.27 \times 10^{13}}{r}} \; \rm m \cdot s^{-1} \end{aligned}.

<h3>b)</h3>

Since the orbit is a circle of radius R, the distance traveled in one period would be equal to the circumference of that circle, 2 \pi R.

Divide distance with speed to find the time required.

\begin{aligned} t &= \frac{s}{v} \cr &= 2 \pi R}\left/\sqrt{\frac{G \cdot M}{R}} \; \rm m \cdot s^{-1}\right. \cr &= \frac{2\pi R^{3/2}}{\sqrt{G \cdot M}} \cr &\approx  9.62 \times 10^{-7}\, R^{3/2}\; \rm s\end{aligned}.

<h3>c)</h3>

Convert 24.6\; \rm \text{hours} to seconds:

24.6 \times 3600 = 88560\; \rm s

Solve the equation for R:

9.62 \times 10^{-7}\, R^{3/2}= 88560.

R \approx 2.04 \times 10^7\; \rm m.

<h3>d)</h3>

If an object is at its escape speed, its kinetic energy (KE) plus its gravitational potential energy (GPE) should be equal to zero.

\displaystyle \text{GPE} = -\frac{G \cdot M \cdot m}{r} (Note the minus sign in front of the fraction. GPE should always be negative or zero.)

\displaystyle \text{KE} = \frac{1}{2} \, m \cdot v^{2}.

Solve for v. The value of m shouldn't matter, for it would be eliminated from both sides of the equation.

\displaystyle -\frac{G \cdot M \cdot m}{r} + \frac{1}{2} \, m \cdot v^{2}= 0.

\displaystyle v = \sqrt{\frac{2\, G \cdot M}{R}} \approx 5.01\times 10^{3}\; \rm m\cdot s^{-1}.

5 0
3 years ago
A battery is a source of:<br> a. current<br> b. voltage<br> c. resistance<br> d. all of these
kolezko [41]

The correct answer is b


3 0
3 years ago
What liquid is the universal solvent?
mafiozo [28]
A. water is the universal solvent.
3 0
3 years ago
Read 2 more answers
Other questions:
  • Which is the correct description of the Sun's orbit within the Milky Way Galaxy?
    9·1 answer
  • If the mass of one of two objects is increased, the force of attraction between them will
    15·1 answer
  • Which is an inertial reference frame (or at least a very good approximation of one)? Which is an inertial reference frame (or at
    10·1 answer
  • Tubelike structure through which lava travels through to reach the surface
    10·1 answer
  • During a tennis serve, a racket is given an angular acceleration of magnitude 150 rad/s^2. At the top of the serve, the racket h
    6·1 answer
  • a fast humvee drove from desert a to desert b. for the 12 hours, it travelled at an speed of 185 km/h. for the next 13 hours, it
    15·1 answer
  • If Q = 16 nC, a = 3.0 m, and b = 4.0 m, what is the magnitude of the electric field at point P?
    9·1 answer
  • How long will it take, in minutes, for a transformer to transfer 2.3 X 10^6 J of energy from a 120-V circuit to a 345-V circuit
    15·1 answer
  • Which of these is one of six most common elements found in the human body??
    7·1 answer
  • A 5.00-kg object is initially at rest. The object is acted on by a 9.00-N force toward the east for 3.00 s. No force acts on the
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!