1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kotykmax [81]
3 years ago
5

What is the answer to -10+(-3)

Mathematics
2 answers:
Arturiano [62]3 years ago
6 0

Answer:-13

Step-by-step explanation:

aniked [119]3 years ago
5 0

Answer:

-13 would be your answer. Hope this helps!

You might be interested in
What is the mode of the following set of numbers? 121, 347, 45, 21, 300, 614, 312, 333, 421 no mode 279.3 312 21
Lorico [155]
There is no mode. Hope this helps
5 0
4 years ago
Read 2 more answers
Solve the system by substitution. <br>y = -7x + 6 <br>y = -10x​
Artist 52 [7]

Answer:

(-2, 20)

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Equality Properties

<u>Algebra I</u>

  • Solving systems of equations using substitution/elimination

Step-by-step explanation:

<u>Step 1: Define Systems</u>

y = -7x + 6

y = -10x

<u>Step 2: Solve for </u><em><u>x</u></em>

<em>Substitution</em>

  1. Substitute in <em>y</em>:                   -10x = -7x + 6
  2. Add 10x to both sides:      0 = 3x + 6
  3. Isolate <em>x</em> term:                    -6 = 3x
  4. Isolate <em>x</em>:                             -2 = x
  5. Rewrite:                              x = -2

<u>Step 3: Solve for </u><em><u>y</u></em>

  1. Define equation:                    y = -10x
  2. Substitute in <em>x</em>:                       y = -10(-2)
  3. Multiply:                                  y = 20
5 0
3 years ago
Read 2 more answers
Plz help me i am timed plz
Aloiza [94]

Im gonna have to say its c

4 0
4 years ago
I don't understand this ​
Anna11 [10]

Answer:

I'm not 100% sure, but it might be "dynamic"

8 0
3 years ago
Read 2 more answers
Evaluate the following integral (Calculus 2) Please show step by step explanation!
Nuetrik [128]

Answer:

4\ln \left| \dfrac{1}{3}\sqrt{9+(\ln x)^2} + \dfrac{1}{3}\ln x \right|+\text{C}

Step-by-step explanation:

<u>Fundamental Theorem of Calculus</u>

\displaystyle \int \text{f}(x)\:\text{d}x=\text{F}(x)+\text{C} \iff \text{f}(x)=\dfrac{\text{d}}{\text{d}x}(\text{F}(x))

If differentiating takes you from one function to another, then integrating the second function will take you back to the first with a constant of integration.

Given indefinite integral:

\displaystyle \int \dfrac{4}{x\sqrt{9+(\ln(x))^2}}\:\:\text{d}x

Rewrite 9 as 3²:

\implies \displaystyle \int \dfrac{4}{x\sqrt{3^2+(\ln(x))^2}}\:\:\text{d}x

<u>Integration by substitution</u>

\boxed{\textsf{For }\sqrt{a^2+x^2} \textsf{ use the substitution }x=a \tan\theta}

\textsf{Let } \ln x=3 \tan \theta

\begin{aligned}\implies \sqrt{3^2+(\ln x)^2} & =\sqrt{3^2+(3 \tan\theta)^2}\\ & = \sqrt{9+9\tan^2 \theta}\\ & = \sqrt{9(1+\tan^2 \theta)}\\ & = \sqrt{9\sec^2 \theta}\\ & = 3 \sec\theta\end{aligned}

Find the derivative of ln x and rewrite it so that dx is on its own:

\implies \ln x=3 \tan \theta

\implies \dfrac{1}{x}\dfrac{\text{d}x}{\text{d}\theta}=3 \sec^2\theta

\implies \text{d}x=3x \sec^2\theta\:\:\text{d}\theta

<u>Substitute</u> everything into the original integral:

\begin{aligned} \implies \displaystyle \int \dfrac{4}{x\sqrt{9+(\ln(x))^2}}\:\:\text{d}x & = \int \dfrac{4}{3x \sec \theta} \cdot 3x \sec^2\theta\:\:\text{d}\theta\\\\ & = \int 4 \sec \theta \:\: \text{d}\theta\end{aligned}

Take out the constant:

\implies \displaystyle 4 \int \sec \theta\:\:\text{d}\theta

\boxed{\begin{minipage}{7 cm}\underline{Integrating $\sec kx$}\\\\$\displaystyle \int \sec kx\:\text{d}x=\dfrac{1}{k} \ln \left| \sec kx + \tan kx \right|\:\:(+\text{C})$\end{minipage}}

\implies 4\ln \left| \sec \theta + \tan \theta \right|+\text{C}

\textsf{Substitute back in } \tan\theta=\dfrac{1}{3}\ln x :

\implies 4\ln \left| \sec \theta + \dfrac{1}{3}\ln x \right|+\text{C}

\textsf{Substitute back in }  \sec\theta=\dfrac{1}{3}\sqrt{9+(\ln x)^2}:

\implies 4\ln \left| \dfrac{1}{3}\sqrt{9+(\ln x)^2} + \dfrac{1}{3}\ln x \right|+\text{C}

Learn more about integration by trigonometric substitution here:

brainly.com/question/28157322

brainly.com/question/28156093

8 0
2 years ago
Other questions:
  • ANSWER NUMBER 7 FOR 20 POINTS
    8·1 answer
  • The perimeter of a semicircle is 25.7 feet. What is the semicircle's radius?<br><br> Use 3.14 for ​.
    10·1 answer
  • When Jonas does his math homework, he spends an average of 4 minutes on each problem. Last night he spent 1.8 hours on his non-m
    9·1 answer
  • How do you do this question?
    12·2 answers
  • 1. The largest of 2 integers is one more than
    15·1 answer
  • Find the function y = f(t) passing through the point (0, 18) with the given first derivative.
    5·1 answer
  • −4y−4+(−3)<br> i need help solving this
    15·2 answers
  • Please help due in 3 min
    10·1 answer
  • What is the degree of the polynomial below?
    8·1 answer
  • Given that R= 9x + 8y<br> Find y when x = 3 and R= 27
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!