Answer:
The law of reflection states that the angle of incidence = the angle of reflection.
Explanation:
Reflection is the phenomenon that occurs when a ray of light hits the boundary between two media and it is reflected back into the first medium.
In such a situation, we call:
- angle of incidence: it is the angle between the direction of the incident ray and the normal to the surface
- angle of reflection: it is the angle between the direction of the reflected ray and the normal to the surface
There is a precise relationship between the angle of incidence and the angle of reflection. In fact, the Law of Reflection states that:
- The incident ray, the reflected ray and the normal to the surface all lie within the same plane
- The angle of reflection is equal to the angle of incidence
Answer:
I'm pretty sure this is not a complete question. My guess is that you are trying to add/subtract vectors. Vectors have both magnitude and direction, so vector A is pretty clear, but a magnitude of 13 (i'm guessing a resultant) without a direction is weird.
IF 13 is the magnitude of the resultant, vector B added to vector A could have any magnitude 17 ≤ B ≤ 43
It could have any direction of
θ = (225 - 180) ± arcsin(13/30)
θ = 45 ± 25.679...
70.679 ≤ θ ≤ 19.321
components of vector B would be
Bx = |B|cosθ
By = |B|sinθ
Answer: The statement "The charge cannot be created or destroyed describes the principle of the conservation of charge".
Explanation:
According to the conservation of charge, the charge can neither be created nor destroyed. It can be transferred from one system to another.
In an isolated system, the total electric charge remains constant. The net quantity of electric charge is always conserved in the universe.
Therefore, "the charge cannot be created or destroyed" describes the principle of the conservation of charge.
Protons do not move out of the nucleus of atoms although they repel each other.
Remember that protons are particles with positive charge and they held together in the nucleus of the atom which is a tiny tiny region. As you know, like charges repel each other, which means that the protons exert a repulsion force.