Answer:
c. remains the same, but the RPMs decrease.
Explanation:
Because there aren't external torques on the system composed by the person and the turntable it follows that total angular momentum (I) is conserved, that means the total angular momentum is a constant:

The total angular momentum is the sum of the individual angular momenta, in our case we should sum the angular momentum of the turntable and the angular momentum of a point mass respect the center of the turntable (the person)
(1)
The angular momentum of the turntable is:
(2)
with I the moment of inertia and ω the angular velocity.
The angular momentum of the person respects the center of the turntable is:
(3)
with r the position of the person respects the center of the turntable, m the mass of the person and v the linear velocity
Using the fact
:
(3)
By (3) and (2) on (1) and working only the magnitudes (it's all that we need for this problem):


Because the equality should be maintained, if we increase the distance between the person and the center of the turntable (r), the angular velocity should decrease to maintain the same constant value because I and m are constants, so the RPM's (unit of angular velocity) are going to decrease.
One example of current electricity are transmission lines. These bring electricity from power stations to individual houses.
Answer:
<em>The amount of electric charge transported = 0.192 C</em>
Explanation:
Electric Charge: This is defined as the product of electric current and time in an electric circuit, The S.I unit of electric charge is Coulombs (C)
Q = It..................... Equation 1
Where Q = Electric charge, I = electric current, t = time.
<em>Given:</em> I = 285 mA, t = 674 milliseconds.
<em>Conversion: (i) Convert from 285 mA to A = (285/1000) A = 0.285 A</em>
<em> (ii) convert from 674 milliseconds to seconds = (674/1000) s = 0.674 s </em>
Substituting these values into equation 1
Q = 0.285 × 0.674
<em>Q = 0.192 C</em>
<em>Therefore the amount of electric charge transported = 0.192 C</em>
<em></em>
<em></em>
Answer:
I hope it is no too late
Explanation:
hmmm,
In a gas, for example, the molecules are traveling in random directions at a variety of speeds - some are fast and some are slow. ... If more energy is put into the system, the average speed of the molecules will increase and more thermal energy or heat will be produced.
Explanation:
Distance covered by the particle is given by:
Distance (d) = rate (v) × time (t)
Speed of Mary, v₁ = 50 mph
Speed of Jim, v₂ = 60 mph
It is assumed that, Mary and Jim leave at the same time. After one hour, Jim is 10 miles ahead.
Distance travelled by Jim, d₁ = (60t + 10)
Distance travelled by Mary, d₂ = 50t
The distance between Mary and Jim is greater than or equal to 100 miles.



So, Jim takes is 9 hours more than Mary to cover same distance. Hence, this is the required solution.