Answer:
It would take the object 5.4 s to reach the ground.
Explanation:
Hi there!
The equation of the height of a free-falling object at any given time, neglecting air resistance, is the following:
h = h0 + v0 · t + 1/2 · g · t²
Where:
h = height of the object at time t.
h0 = initial height.
v0 = initial velocity.
g = acceleration due to gravity (-32.2 ft/s² considering the upward direction as positive).
t = time
Let´s supose that the object is dropped and not thrown so that v0 = 0. Then:
h = h0 + 1/2 · g · t²
We have to find the time at which h = 0:
0 = 470 ft - 1/2 · 32.2 ft/s² · t²
Solving for t:
-470 ft = -16.1 ft/s² · t²
-470 ft / -16.1 ft/s² = t²
t = 5.4 s
Answer:
0.0241875 m
Explanation:
= Mass of quarterback = 80 kg
= Mass of football = 0.43 kg
= Velocity of quarterback
= Velocity of football = 15 m/s
Time taken = 0.3 seconds
In this system as the linear momentum is conserved

Assuming this velocity is constant

The distance the quarterback will move in the horizontal direction is 0.0241875 m
Ticker Tape analysis is a common way of analyzing the motion of the objects to perform in the physics laboratory. A long tape is attached to a moving object and threaded through a device that places a tick upon the tape at regular intervals of time. This ticker tape can also determine if the object is fast or slow. It can also reveal if the object is moving with a constant velocity or accelerating. The changing velocity and acceleration represented by the changing distance between dots in the ticker tape. And also the constant velocity and therefore no acceleration represent the constant distance between dots.
ΔPE = mgh₂ - mgh₁= mg(h₂- h₁) = mgΔh