A. and D. would be the best pick for this sort of experiment, but maybe (unlikely) B. because you could see how they could react in certain situations, how they react to danger but I suggest A.
Hope this helps you ☁︎☀︎☁︎
Answer:
Hey!
Your answer is Calcium Phosphate!
Explanation:
It is the substance/mineral that is mostly found in our teeth and bones!
HOPE THIS HELPS!!
This is a missing part of your question:
The equilibrium system between sulfur dioxide gas, oxygen gas, and sulfur trioxide gas is given.
So you need the equilibrium balanced equation of SO2, O2, SO3 reaction:
First, we will start with the original equation which is not balanced yet (to understand how we get it):
SO2 + O2 ↔ SO3
Here the number of O atom is not equal at the to sides
So we will start to balance our equation by make the number of O atom equal each other on both sides:
So we will start to put 2SO3 instead of SO3
and put 2SO2 instead of SO2 to balance also the S atom on both sides
So we will get this:
2SO2(g) + O2(g) ↔ 2SO3(g) (This is our equilibrium balanced equation)
know we have a number of O atom equals on each side = 6
and the sulfur equals on each side = 2
Answer:
0.022
Explanation:
milliter (ml) = 1 cubic centimeter (cc)= 0.001 liters (l) = 0.000001 cubic meters (m3).
1 ml = 0.061024 cubic inches (in3) ; 1 in3 = 16.4 ml.
1 ml = 0.000035 cubic feet (ft3); 1 ft3 = 28,317 ml.
1 ml = 2.64 x 10-4 U.S. gallons (gal); 1 gal = 4.55 x 103 ml.
Answer:
1) The vapor density of the organic compound is approximately 12.57
2) The relative molar mass (RMM) of the organic compound is approximately 25.14 grams
Explanation:
1) The mass of the balloon filled with dry hydrogen = 35 grams
The mass of the balloon filled with vapor of an organic compound = 440 grams
The vapor density = (Weight of a given volume of gas)/(Weight of equal volume of hydrogen)
The vapor density of the organic compound = (440)/(35) ≈ 12.57
The vapor density of the organic compound ≈ 12.57
2) The relative molar mass (RMM) = 2 × vapor density
The relative molar mass (RMM) of the organic compound = 2 × vapor density of the organic compound
The relative molar mass (RMM) of the organic compound ≈ 2 × 12.57 ≈ 25.14 grams
The relative molar mass (RMM) of the organic compound ≈ 25.14 grams