Explanation:
According to the Henderson-Hasselbalch equation,
pH =
+ ![\frac{log[A^{-}]}{[HA]}](https://tex.z-dn.net/?f=%5Cfrac%7Blog%5BA%5E%7B-%7D%5D%7D%7B%5BHA%5D%7D)
Given values are pH = 6,
= 8
Putting given values into the above equation as follows.
6 = 8 + ![\frac{log [A^{-}]}{[HA]}](https://tex.z-dn.net/?f=%5Cfrac%7Blog%20%5BA%5E%7B-%7D%5D%7D%7B%5BHA%5D%7D)
= -2
= antilog -2
= 0.01
But according to the question, we need protonated to deprotonated ratio of ![\frac{[HA]}{[A^{-}]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BHA%5D%7D%7B%5BA%5E%7B-%7D%5D%7D)
= 
= 100
Thus, we can conclude that ratio of the protonated to the deprotonated form of the acid is
.
The answer is (a) 30g. Zinc = 30. 1 mole = 30 x 1 = 30g
Since there is more energy added as heat rises, the particles disperse and have larger movements.
They try to base their conclusions off of data and measurements of which they should record from conducting experiments