Answer:
H0: μ = 5 versus Ha: μ < 5.
Step-by-step explanation:
Given:
μ = true average radioactivity level(picocuries per liter)
5 pCi/L = dividing line between safe and unsafe water
The recommended test here is to test the null hypothesis, H0: μ = 5 against the alternative hypothesis Ha: μ < 5.
A type I error, is an error where the null hypothesis, H0 is rejected when it is true.
We know type I error can be controlled, so safer option which is to test H0: μ = 5 vs Ha: μ < 5 is recommended.
Here, a type I error involves declaring the water is safe when it is not safe. A test which ensures that this error is highly unlikely is desirable because this is a very serious error. We prefer that the most serious error be a type I error because it can be explicitly controlled.
Answers:
a= 5x±
------------------------------
6
u=± 
-------------------------
2
<h2>Brainliest please!!!! It took me a while to figure this out!</h2>
Answer:
Distributive Property : <em><u>a(b+c)= ab+ac</u></em>
<h3><u>(35-28x)</u> is the right answer.</h3>
Multiply equation B by 2.
Multiply equation A by 2
Multiply equation B by 3.
Multiply equation A by -3
Answer: D
Answer: 1. HA cannot be a reason to show given triangles are congruent as it is not given that they have an acute angle common in both the triangles.
2. HL can be a reason to show given triangles are congruent as the triangles are right triangle with equal legs and hypotenuse.
3. SAS can be a reason to show given triangles are congruent as there are two congruent sides in both triangles and included angles ∠A=∠D=90° [right angle].
4. LA cannot be a reason to show given triangles are congruent as it is not given that they have an acute angle common in both the triangles.
5. AAS cannot be a reason to show given triangles are congruent as it is not given that they have two angles common in both the triangles.
6.SSS can be a reason to show given triangles are congruent as it is shown that all the sides of one triangle is congruent to the other.
HOPE THIS HELPS