Complete the recursive formula of the geometric sequence -0.56\,,-5.6\,,-56\,,-560,...−0.56,−5.6,−56,−560,...Minus, 0, point, 56
pentagon [3]
Answer:
The recursive formula is:
Cn = 10C(n-1)
Step-by-step explanation:
Given the geometric sequence.
-0.56, -5.6, -56, -560, ...
The common ratio is
-5.6/-0.56 = -56/-5.6 = -560/-56 = ... = 10
The recursive formula is easily
Cn = C(n-1) × 10
That is a number is ten times the preceding number.
Hi,
To solve this problem, Let us take the LCM of 10 and 16 which will come 80.
Now suppose the cost price of 10 tables =₹n CP of 80 tables will be ₹ 8n
According to the question, CP of 10 tables is equal to the SP of 16 tables, then
the SP of 16 tables will also be ₹ n.
So, SP of 80 tables will be ₹ 5n
So, Loss = CP-SP
→ 8n - 5n = ₹ 3n
Loss%= (3n×100)/8n
Loss%= 37.5%.
Hence the correct answer will be a <u>loss of 37.5%.</u>
Answer:
= 14X + 6
Step-by-step explanation:
Answer:
6
Step-by-step explanation:
since their are 3 numbers to choose from we do 3! or 3*2*1 which is 6.
Answer:
x = -1
x = 5
Step-by-step explanation:
Use pythagorean theorem: a² + b² = c²
x² + (2x + 2)² = (2x + 3)²
Since these are quantities, you'll have to make them into quadratic equations.
(2x + 2)(2x + 2) = 4x² + 4x + 4x + 4
(2x + 3)(2x + 3) = 4x² + 6x + 6x + 9
x² + 4x² + 4x + 4x + 4 = 4x² + 6x + 6x + 9
Combine like terms
5x² + 8x + 4 = 4x² + 12x + 9
Move one side to set the equation equal to 0
x² - 4x - 5 = 0
Solve
x² - 5x + x - 5 = 0
x(x - 5) + 1(x - 5) = 0
(x + 1)(x - 5) = 0
x = -1, 5
<em>We</em><em> </em><em>can</em><em> </em><em>check</em><em> </em><em>that</em><em> </em><em>these</em><em> </em><em>are</em><em> </em><em>correct</em><em> </em><em>by</em><em> </em><em>plugging</em><em> </em><em>them</em><em> </em><em>in</em><em> </em><em>for</em><em> </em><em>x</em><em> </em><em>and</em><em> </em><em>seeing</em><em> </em><em>if</em><em> </em><em>they</em><em> </em><em>are</em><em> </em><em>equal</em>
<em>For</em><em> </em><em>example</em>
<em>(</em><em>-1</em><em>)</em><em>²</em><em> </em><em>+</em><em> </em><em>(</em><em>2</em><em>(</em><em>-1</em><em>)</em><em> </em><em>+</em><em> </em><em>2</em><em>)</em><em>²</em><em> </em><em>=</em><em> </em><em>(</em><em>2</em><em>(</em><em>-1</em><em>)</em><em> </em><em>+</em><em> </em><em>3</em><em>)</em><em>²</em>
<em>1</em><em> </em><em>=</em><em> </em><em>1</em>