<u>Answer:</u> The
for the reaction is -1406.8 kJ.
<u>Explanation:</u>
Hess’s law of constant heat summation states that the amount of heat absorbed or evolved in a given chemical equation remains the same whether the process occurs in one step or several steps.
According to this law, the chemical equation is treated as ordinary algebraic expressions and can be added or subtracted to yield the required equation. This means that the enthalpy change of the overall reaction is equal to the sum of the enthalpy changes of the intermediate reactions.
The chemical reaction for the formation reaction of
is:

The intermediate balanced chemical reaction are:
(1)
( × 6)
(2)
( × 3)
(3)
( × 2)
(4)

The expression for enthalpy of formation of
is,
![\Delta H^o_{formation}=[6\times \Delta H_1]+[3\times \Delta H_2]+[2\times \Delta H_3]+[1\times \Delta H_4]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Bformation%7D%3D%5B6%5Ctimes%20%5CDelta%20H_1%5D%2B%5B3%5Ctimes%20%5CDelta%20H_2%5D%2B%5B2%5Ctimes%20%5CDelta%20H_3%5D%2B%5B1%5Ctimes%20%5CDelta%20H_4%5D)
Putting values in above equation, we get:
![\Delta H^o_{formation}=[(-74.8\times 6)+(-185\times 3)+(323\times 2)+(-1049\times 1)]=-1406.8kJ](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Bformation%7D%3D%5B%28-74.8%5Ctimes%206%29%2B%28-185%5Ctimes%203%29%2B%28323%5Ctimes%202%29%2B%28-1049%5Ctimes%201%29%5D%3D-1406.8kJ)
Hence, the
for the reaction is -1406.8 kJ.
<h3>
Answer: 386.67 g/mol </h3>
Explanation:
Molar Mass = Mass ÷ Mole
= 0.406 g ÷ 0.00105 mol
= 386.67 g/mol
∴ molar mass of cholesterol = 386.67 g/mol
Answer:
"0.60 g" is the appropriate solution.
Explanation:
The given values are:
Volume of base,
= 30 ml
Molarity of base,
= 0.05 m
Molar mass of acid,
= 400 g/mol
As we know,
⇒ 
On substituting the values, we get
⇒ 
⇒ 
⇒
hence,
⇒ 
On substituting the values, we get
⇒ 
⇒ 
⇒ 
Answer:
1.0
Explanation:
Hydrochloric acid is a strong acid, that is, an acid that dissociates completely, according to the following reaction.
HCl(aq) → H⁺(aq) + Cl⁻(aq)
Then, the concentration of H⁺ will be equal to the initial concentration of the acid, i.e., 0.10 M.
We can calculate the pH using the following expression.
pH = -log [H⁺] = -log 0.10 = 1.0
Newton's third law of motion states that for every action force, there is an equal and opposite reaction force so that means that the wall is pushing you with the same amount of force that you put on it.