Answer:
The Anatomy of a Lens
Refraction by Lenses
Image Formation Revisited
Converging Lenses - Ray Diagrams
Converging Lenses - Object-Image Relations
Diverging Lenses - Ray Diagrams
Diverging Lenses - Object-Image Relations
The Mathematics of Lenses
Ray diagrams can be used to determine the image location, size, orientation and type of image formed of objects when placed at a given location in front of a lens. The use of these diagrams was demonstrated earlier in Lesson 5 for both converging and diverging lenses. Ray diagrams provide useful information about object-image relationships, yet fail to provide the information in a quantitative form. While a ray diagram may help one determine the approximate location and size of the image, it will not provide numerical information about image distance and image size. To obtain this type of numerical information, it is necessary to use the Lens Equation and the Magnification Equation. The lens equation expresses the quantitative relationship between the object distance (do), the image distance (di), and the focal length (f)
Answer:
Waves transfer energy, not matter
Explanation:
The one word you're looking for to fill in the blank
can be "uneven" or "non-uniform".
Answer:
The flux is calculated as φ=BAcosθ. The flux is thereforemaximum when the magnetic field vector is perpendicular to theplane of the loop. We may also deduce that the flux is zero whenthere is no component of the magnetic field that is perpendicularto the loop.
when angle is zero then flux is maximium because when angle zerocos is maximium
Answer:
Mass as a Measure of the Amount of Inertia
All objects resist changes in their state of motion. All objects have this tendency - they have inertia.
Explanation:
hope this helps