Answer: 17.83 AU
Explanation:
According to Kepler’s Third Law of Planetary motion <em>“The square of the orbital period of a planet is proportional to the cube of the semi-major axis (size) of its orbit”. </em>
(1)
Talking in general, this law states a relation between the <u>orbital period</u>
of a body (moon, planet, satellite, comet) orbiting a greater body in space with the <u>size</u>
of its orbit.
However, if
is measured in <u>years</u>, and
is measured in <u>astronomical units</u> (equivalent to the distance between the Sun and the Earth:
), equation (1) becomes:
(2)
This means that now both sides of the equation are equal.
Knowing
and isolating
from (2):
(3)
(4)
Finally:
(5)
27.5 because of you divide the 55miles with the time you get your velocity which is the speed.
▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂☘️
The potential energy of the object depends on
- the height of the object with respect to some reference points,
- the mass of the object,
- the gravitational field the object is in.
▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂☘️
Hope it helps ~
<span>Px = 0
Py = 2mV
second, Px = mVcosφ
Py = –mVsinφ
add the components
Rx = mVcosφ
Ry = 2mV – mVsinφ
Magnitude of R = âš(Rx² + Ry²) = âš((mVcosφ)² + (2mV – mVsinφ)²)
and speed is R/3m = (1/3m)âš((mVcosφ)² + (2mV – mVsinφ)²)
simplifying
Vf = (1/3m)âš((mVcosφ)² + (2mV – mVsinφ)²)
Vf = (1/3)âš((Vcosφ)² + (2V – Vsinφ)²)
Vf = (V/3)âš((cosφ)² + (2 – sinφ)²)
Vf = (V/3)âš((cos²φ) + (4 – 2sinφ + sin²φ))
Vf = (V/3)âš(cos²φ) + (4 – 2sinφ + sin²φ))
using the identity sin²(Ď)+cos²(Ď) = 1
Vf = (V/3)âš1 + 4 – 2sinφ)
Vf = (V/3)âš(5 – 2sinφ)</span>
Force is equal to mass multiplied by acceleration, therefore
F=ma
m=2569.6 kg
a=4.65m/s^2
therefore F=2569.6*4.65=11948.6 (correct to 1 d.p.)