This question involves the concepts of dynamic pressure, volume flow rate, and flow speed.
It will take "5.1 hours" to fill the pool.
First, we will use the formula for the dynamic pressure to find out the flow speed of water:

where,
v = flow speed = ?
P = Dynamic Pressure = 55 psi
= 379212 Pa
= density of water = 1000 kg/m³
Therefore,

v = 27.54 m/s
Now, we will use the formula for volume flow rate of water coming from the hose to find out the time taken by the pool to be filled:

where,
t = time to fill the pool = ?
A = Area of the mouth of hose =
= 1.98 x 10⁻⁴ m²
V = Volume of the pool = (Area of pool)(depth of pool) = A(1.524 m)
V =
= 100.1 m³
Therefore,

<u>t = 18353.5 s = 305.9 min = 5.1 hours</u>
Learn more about dynamic pressure here:
brainly.com/question/13155610?referrer=searchResults
Answer: Technician B is right.
Explanation:
Evacuation process is used in refrigeration systems to remove moisture, air and non-profit condensable gases in order to achieve maximum function of the system.
vacuum pump is used to draw the sealed AC system into a vacuum. Evacuation of a refrigerant system also helps to maintain pressure, this is so as pulling a vacuum on the system is simply removing matter (mostly air and nitrogen) from inside the system so that the pressure inside drops below atmospheric pressure.
Answer: Option (b) is the correct answer.
Explanation:
A gamma particle is basically a photon of electromagnetic radiation with a short wavelength.
Symbol of a gamma particle is
. Hence, charge on a gamma particle is also 0.
For example, 
So, when a nucleus decays by gamma decay to a daughter nucleus then there will occur no change in the number of protons and neutrons of the parent atom but there will be loss of energy as a nuclear reaction has occurred.
Thus, we can conclude that the statement daughter nucleus has the same number of nucleons as the original nucleus., is correct about if a nucleus decays by gamma decay to a daughter nucleus.
Answer:
V = 0.0806 m/s
Explanation:
given data
mass quarterback = 80 kg
mass football = 0.43 kg
velocity = 15 m/s
solution
we consider here momentum conservation is in horizontal direction.
so that here no initial momentum of the quarterback
so that final momentum of the system will be 0
so we can say
M(quarterback) × V = m(football) × v (football) ........................1
put here value we get
80 × V = 0.43 × 15
V = 0.0806 m/s