Hello Meggieh821, to find the lim as x approaches 0 we can check this by inserting a number that is close to 0 that is coming from the left and from the right.
For instance, we can find the lim by using the number -.00001 for x and solve
<span>csc(3x) / cot(x)
</span>csc(3*-.00001) / cot(-.00001) = .333333... = 1 /3
We also need to check coming from the right. We will use the number .00001 for x
csc(3x) / cot(x)
csc(3*.00001) / cot(.00001) = .333333... = 1 /3
So since we are getting 1/3 from the left and right we can say as x approaches 0 the limit is 1/3
<span>

</span>
Answer:

General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
<u>Geometry</u>
- Volume of a Rectangular Prism: V = lwh
<u>Calculus</u>
Derivatives
Derivative Notation
Differentiating with respect to time
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Step-by-step explanation:
<u>Step 1: Define</u>
<u />
<u />
<u />
<u>Step 2: Differentiate</u>
- Rewrite [VRP]:

- Differentiate [Basic Power Rule]:

<u>Step 3: Solve for Rate</u>
- Substitute:

- Multiply:

Here this tells us that our volume is decreasing (ice melting) at a rate of 360 cm³ per hour.
Answer:
a
Step-by-step explanation:
it is all doubles