1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Greeley [361]
3 years ago
10

How does a mirror affect the path of light?

Physics
1 answer:
yulyashka [42]3 years ago
8 0

Light rays change direction when they hit a mirror. The phenomenon is known as reflection. Light rays travels in a straight light. They strike the surface of the mirror at a particular angle called incident angle. It is the angle between the ray and normal at the point of contact. The rays leaves the surface making the same angle with the normal called reflection angle but in different direction.

You might be interested in
A 0.50 kg mass is attached to a string 1.0 meter long and moves in a horizontal circle at a rate of 0.5 seconds per revolution.
vesna_86 [32]

(1) First compute the linear speed of the mass. If it completes 1 revolution in 0.5 seconds, then the mass traverses a distance of 2<em>π</em> (1.0 m) ≈ 2<em>π</em> m (the circumference of the circular path), so that its speed is

<em>v</em> = (1/0.5 rev/s) • (2<em>π</em> m/rev) = 4<em>π</em> m/s ≈ 12.57 m/s

Then the centripetal acceleration <em>a</em> is

<em>a</em> = <em>v</em>² / (1.0 m) = 16<em>π</em>² m/s² ≈ 160 m/s²

(where <em>r</em> is the path's radius).

(2) By Newton's second law, the tension in the string is <em>T</em> such that

<em>T</em> = (0.50 kg) <em>a</em> = 8<em>π</em>² N ≈ 79 N

7 0
3 years ago
A 2 kg package is released on a 53.1° incline, 4 m from a long spring with force constant k = 140 N/m that is attached at the bo
Aneli [31]

Answer:

A) The speed of the package just before it reaches the spring = 7.31 m/s

B) The maximum compression of the spring is 0.9736m

C) It is close to it's initial position by 0.57m

Explanation:

A) Let's talk about the motion;

As the block moves down the inclines plane, friction is doing (negative) work on the block while gravity is doing (positive) work on the block.

Thus, the maximum force due to

static friction must be less than the force of gravity down the inclined plane in order for the block to slide down.

Since the block is sliding down the inclined plane, we'll have to use kinetic friction when calculating the amount of work (net) on the block.

Thus;

∆Kt + ∆Ut = ∆Et

∆Et = ∫|Ff| |ds| = - Ff L

Where Ff is the frictional force.

So ∆Kt + ∆Ut = - Ff L

And so;

(1/2)m((vf² - vo²) + mg(yf - yo) = - Ff L

Resolving this for v, we have;

V = √(2gL(sinθ - μkcosθ)

V = √(2 x 9.81 x 4) (sin53.1 - 0.2 cos53.1)

V = √(78.48) (0.68))

V = √(53.3664)

V= 7.31 m/s

B) For us to find the maximum compression of the spring, let's use the change in kinetic energy, change in potential energy and the work done by friction.

If we start from the top of the incline plane, the initial and final kinetic energy of the block is zero:

Thus,

∆Kt + ∆Ut = ∆Et

And,

∆E = −Ff ∆s

Thus;

mg(yo - yf) + (k/2)(∆(sf)² - ∆(so)² = −Ff ∆s

Now let's solve it by putting these values;

yf − y0 = −(L + ∆d) sin θ; ∆s = L + ∆d; ∆sf = ∆d; and ∆s0 = 0 where ∆d is the maximum compression in the spring.

So, we have;

((1/2 )(K)(∆d )²) − ∆d (mg sin θ − (µk)mg cos θ) + ((µk)mgLcos θ − mgLsin θ) = 0

Let's rearrange this for easy solution.

((1/2)(K)(∆d)²) − ∆d (mg sin θ − (µk)mg cos θ) - L(mgsin θ - (µk)mgcos θ) = 0

Divide each term by (mgsin θ - (µk)mgcos θ) to get;

[((K/2)(∆d)²)}/{(mgsin θ - (µk)mgcos θ)}] - ∆d - L = 0

Putting k = 140,m = 2kg, µk = 0.2 and θ = 53.1° and L=4m, we obtain;

5.247(∆d)² - ∆d - 4 = 0

Solving as a quadratic equation;

∆d = 0.9736m

C) let’s find out how high the block rebounds up the inclined plane with the fact that final and initial kinetic energy is zero;

mg(yf − yo) + 1 /2 k (∆s f² − ∆s o²) = −Ff ∆s

Now let's solve it by putting these values; yf − y0 = (L′ + ∆d)sin θ; ∆s = L′ + ∆d; ∆sf = 0; and ∆s0 = ∆d.

L' is the distance moved up the inclined plane

So we have;

(1/2)k∆d² + mg(∆d + L′)sin θ =

-(µk)mg cos θ (∆d + L′)

Making L' the subject of the formula, we have;

L' = [(1/2)k∆d²] /(mg sin θ + (µk)mg cos θ)] - ∆d

L' = [(140/2)(0.9736²)] /(2 x 9.81 sin51.3) + (0.2 x 2 x 9.81cos 53.1)] - 0.9736

L' = (66.353)/[(15.696) + (2.3544)]

L' = (66.353)/18.05 = 3.43m

This is the distance moved up the inclined plane. So it's distance feom it's initial position is 4m - 3.43m = 0.57m

3 0
4 years ago
A mother pushes a baby stroller 10 meters by applying 40 newtons of force. How much work was done?
MA_775_DIABLO [31]
It would be 400 newton joule's! :) hope this helps! the equation is 10m*40n = 400newton!
4 0
3 years ago
Read 2 more answers
A charge −1.3 × 10−5 C is fixed on the x-axis at 7 m, and a charge 1 × 10−5 C is fixed on the y-axis at 4 m. Calculate the magni
wariber [46]

Answer:

6104 N/C.

Explanation:

Given:

k = 8.99 × 10^9 Nm2/C^2

Qx = 1.3 × 10^-5 C

rx = 7 m

Qy = 1 × 10−5 C

ry = 4 m

E = F/Q

= kQ/r^2

Ex = (8.99 × 10^9 × 1.3 × 10^−5) ÷ 7^2

= 2385.1 N/C.

Ey = (8.99 × 10^9 × 1.0 × 10^−5) ÷ 4^2

= 5618.75 N/C

Eo = sqrt(Ex^2 + Ey^2)

= sqrt(3.157 × 10^7 + 5.69 × 10^6)

= 6104 N/C.

5 0
3 years ago
An object, initially at rest moves 250m in 17s. What is it's acceleration?
Gekata [30.6K]
With the values you've given, only velocity can be found.
Acceleration is rate of change of velocity

d= 250s
t= 17s

a= d/t
 =\frac{250}{17}
 = 4.7 \frac{m}{s}
8 0
3 years ago
Other questions:
  • This battery has a difference in potential energy between the positive and negative terminal. Which units express this differenc
    5·2 answers
  • Gamma rays carry the highest amount of energy in the entire electromagnetic spectrum. Which process releases gamma rays? A) Phot
    5·2 answers
  • A man runs at a speed of 6.25 meters per second for 240 seconds. How 5 po
    9·1 answer
  • If you are facing north, then east is your
    5·2 answers
  • PLZZZZZZ HELP WILL MARK BRAINLEST 50 POINTS
    6·1 answer
  • An instrument that simply measures earth waves is a _______
    12·1 answer
  • Describe three different ways to change your velocity when youre riding a bike?
    14·2 answers
  • A ball is thrown straight upward with an initial velocity of 18.5m/s at the edge of a cliff that is 25.0m below the initial poin
    12·1 answer
  • When light hits a red wagon, some of the energy is absorbed and ______.
    7·1 answer
  • suppose you are hiking along a trail. make a comparison between the magnitude of your displacement and your distance traveled.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!