1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Greeley [361]
2 years ago
10

How does a mirror affect the path of light?

Physics
1 answer:
yulyashka [42]2 years ago
8 0

Light rays change direction when they hit a mirror. The phenomenon is known as reflection. Light rays travels in a straight light. They strike the surface of the mirror at a particular angle called incident angle. It is the angle between the ray and normal at the point of contact. The rays leaves the surface making the same angle with the normal called reflection angle but in different direction.

You might be interested in
What provides the force on the person in the passenger seat?
podryga [215]

The forces that make a passenger speed up, slow down, or
turn a curve are the same forces that have the same effect
on the driver and anybody else in the car.

-- Speeding up . . .

              the back of the seat
              friction between the car seat and the seat of your pants

-- Slowing down . . .

              the seat belt
              friction between the car seat and the seat of your pants

-- Turning away from a straight line . . .
   
              the seat belt
              friction between the car seat and the seat of your pants
              the door, or whatever or whomever you're leaning against

6 0
3 years ago
Electromagnetic induction means that moving a magnet through a loop of wire creates an electric current.
MAVERICK [17]
False. An Electromagnetic induction is the production of an electromotive force across an electrical conductor in a changing magnetic field.
4 0
3 years ago
Read 2 more answers
A particular balloon can be stretched to a maximum surface area of 1257 cm2. The balloon is filled with 3.1 L of helium gas at a
chubhunter [2.5K]

Answer:

The ballon will brust at

<em>Pmax = 518 Torr ≈ 0.687 Atm </em>

<em />

<em />

Explanation:

Hello!

To solve this problem we are going to use the ideal gass law

PV = nRT

Where n (number of moles) and R are constants (in the present case)

Therefore, we can relate to thermodynamic states with their respective pressure, volume and temperature.

\frac{P_1V_1}{T_1}=\frac{P_2V_2}{T_2} --- (*)

Our initial state is:

P1 = 754 torr

V1 = 3.1 L

T1 = 294 K

If we consider the final state at which the ballon will explode, then:

P2 = Pmax

V2 = Vmax

T2 = 273 K

We also know that the maximum surface area is: 1257 cm^2

If we consider a spherical ballon, we can obtain the maximum radius:

R_{max} = \sqrt{\frac{A_{max}}{4 \pi}}

Rmax = 10.001 cm

Therefore, the max volume will be:

V_{max} = \frac{4}{3} \pi R_{max}^3

Vmax = 4 190.05 cm^3 = 4.19 L

Now, from (*)

P_{max} = P_1 \frac{V_1T_2}{V_2T_1}

Therefore:

Pmax= P1 * (0.687)

That is:

Pmax = 518 Torr

6 0
3 years ago
What is the frequency of radiation whose wavelength is 2.40 x 10-5 cm?
S_A_V [24]
<span>To begin, the formula for finding frequency when wavelength is known is "f = c / w" when c is the constant velocity (3 * 10^8 m/s). To convert the wavelength into a common form (m/s), it will have to be multiplied by 10^-2. This leaves the equation as "f = 3.0 * 10^8 / (2.4 * 10^-5 * 10^-2), or 2.4 * 10^-7. This gives 1.25 * 10^15 m/s as the frequency.</span>
7 0
3 years ago
The dragster has a mass of 1.3 Mg and a center of mass at G. A parachute is attached at C provides a horizontal braking force of
adell [148]

Answer:

The deceleration of the dragster upon releasing the parachute such that the wheels at B are on the verge of leaving the ground is  16.33 m/s²

Explanation:

The additional information to the question is embedded in the diagram attached below:

The height between the dragster and ground is considered to be 0.35 m since is not given ; thus in addition win 0.75 m between the dragster and the parachute; we have: (0.75 + 0.35) m = 1.1 m

Balancing the equilibrium about point A;

F(1.1) - mg (1.25) = ma_a (0.35)

1.8v^2(1.1) - 1200(9.8)(1.25) = 1200a(0.35)

1.8v^2(1.1) - 14700 = 420 a   ------- equation (1)

F_x = ma_x \\ \\ = 1.8v^2 = 1200 \ a             --------- equation (2)

Replacing equation 2 into equation 1 ; we have :

{1.1 * 1200 \ a} - 14700 = 420 a

1320 a - 14700 = 420 a

1320 a -  420 a =14700

900 a = 14700

a = 14700/900

a = 16.33 m/s²

The deceleration of the dragster upon releasing the parachute such that the wheels at B are on the verge of leaving the ground is  16.33 m/s²

5 0
2 years ago
Other questions:
  • The study of alternating electric current requires the solutions of equations of the form i equals Upper I Subscript max Baselin
    13·1 answer
  • Affirmations and strokes relate to the power of adult
    15·1 answer
  • If the distance between the bounces were 1.95 m instead of 1.30 m, but the height remained at 1.30 m, which of your answers to P
    5·1 answer
  • When are the displacement and acceleration equal to zero for the motion of a mass on a spring?
    14·1 answer
  • (a) Find the frequency of revolution of an electron with an energy of 114 eV in a uniform magnetic field of magnitude 46.7 µT. (
    13·1 answer
  • A lightweight string is wrapped several times around the rim of a small hoop. If the free end of the string is held in place and
    5·1 answer
  • 6. An object accelerates from rest to 70 m/s in 3.5 s. What is the acceleration of the object?
    7·1 answer
  • The position of a particle in millimeters is given by s = 133 - 26t + t2 where t is in seconds. Plot the s-t and v-t relationshi
    5·1 answer
  • Suppose the entire solar nebula had cooled to 50 K before the solar wind cleared the early solar system of its gases. How would
    13·1 answer
  • The ________ is located inside the outdoor condenser unit and receives the low-pressure refrigerant vapor through the suction li
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!